DIRECT ORAL ANTICOAGULANTS FOR THE TREATMENT OF VENOUS THROMBOEMBOLIC EVENTS: A SYSTEMATIC REVIEW AND NETWORK META-ANALYSIS

JANUARY 2016
RESEARCH TEAM

George A. Wells, PhD1,2
Shannon Kelly, MSc1
Jesse Elliott, MSc1
Marc Carrier, MD, MSc, FRCPC3
Shuching Hsieh, PhD1
Li Chen, MSc1
Barney Reeves, PhD4
Ahmed Kotb, MSc5
David Beking, MPH2
Becky Skidmore, MLS6

All authors approved the final report.

1 Cardiovascular Research Methods Centre, University of Ottawa Heart Institute, Ottawa, Ontario
2 University of Ottawa, Ottawa, Ontario
3 Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario
4 School of Clinical Science, University of Bristol, Bristol, United Kingdom
5 Royal College of Surgeons in Ireland, Dublin, Ireland
6 Information Specialist Consultant, Ottawa
PROTOCOL

This review is registered with the PROSPERO international prospective register of systematic reviews: CRD42015015010.

ACKNOWLEDGMENTS

The authors would like to acknowledge Michel Boucher, Dr. Agnes Lee, Dr. William Geerts, Scott Klarenbach, Michel Boucher, Karen Lee, Kim Ghosh, Sarah Jennings and Janet Crain for their contributions to the report.

FUNDING

This research by the Cardiovascular Research Methods Centre at the University of Ottawa Heart Institute was funded by grants from the Canadian Institutes of Health Research, Drug Safety and Effectiveness Network.

COPYRIGHT

2016 © Cardiovascular Research Methods Centre at the University of Ottawa Heart Institute (CRMC-UOHI). You are permitted to make copies of this document for non-commercial purposes provided it is not modified when reproduced and appropriate credit is given to CRMC-UOHI.
EXECUTIVE SUMMARY

OBJECTIVES

The objective of this study was to evaluate the efficacy and harms of direct oral anticoaguants (DOACs) compared to current standard therapy (heparin product followed by oral vitamin k antagonists [VKA]) for treatment of acute venous thromboembolism (VTE) and the efficacy and harms of DOACs compared to oral VKAs for extended therapy for secondary prevention of VTE.

There were 2 primary research questions:

1. What are the efficacy and harms of DOACs compared to current standard therapy for 3 or 6 months treatment of VTE (including pulmonary embolism [PE] and deep vein thrombosis [DVT])?

2. For extended therapy for the secondary prevention of VTE (including PE and DVT), what are the efficacy and harms of DOACs compared to oral VKA?

METHODS

The strategy for building and analyzing the evidence base for DOACs in the treatment of VTEs consisted of two fundamental steps:

1. A broad systematic review of the available randomized evidence in the published and grey literature, conducted following the methods and procedures outlined in the Cochrane Handbook for Systematic Reviews of Interventions.

2. A pair-wise meta-analysis and Bayesian network meta-analysis of randomized evidence conducted relating DOACs to other DOACs in a network, for each of the efficacy and safety outcomes specified a priori. The methods and procedures followed are those developed by the Canadian Collaboration for Drug Safety, Effectiveness and Network Meta-Analysis (ccNMA), funded by the Drug Safety and Effectiveness Network (DSEN) of the Canadian Institute of Health Research.

A protocol was developed using guidance from the PRISMA Statement and following the methods and procedures outlined in the Cochrane Handbook for Systematic Reviews of Interventions. It was peer-reviewed by experts in venous thromboembolic disease, pharmacology, statistics, and systematic review methodology. This review has been registered in the PROSPERO database (PROSPERO CRD42015015010).
Studies were eligible for inclusion in the systematic review if they satisfied the population, intervention, comparator, and study design criteria. Studies were not included or excluded based on the presence or absence of outcomes of interest.

PICO statement

<table>
<thead>
<tr>
<th>Population</th>
<th>Adults with acute or prior VTE (DVT, PE)</th>
</tr>
</thead>
</table>
| Interventions | • Apixaban
| | • Dabigatran
| | • Rivaroxaban
| | • Edoxaban |
| Comparisons | ACUTE treatment: standard therapy (LMWH followed by VKA)
| | EXTENDED therapy: Placebo, treatment discontinuation or ASA |

Outcomes: Efficacy
- Recurrent VTE
- Recurrent DVT
- Recurrent PE (fatal and non-fatal)

Outcomes: Safety
- Major bleeds
- Acute coronary syndrome
- Major adverse cardiovascular events
- Stroke
- Cardiovascular death
- All-cause death
- Intracranial bleeding

<table>
<thead>
<tr>
<th>Study Types</th>
<th>Randomized controlled trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exclusions</td>
<td>Phase I or II clinical trials.</td>
</tr>
</tbody>
</table>

Note: ASA = acetylsalicylic acid, DVT = deep vein thrombosis, LMWH = low-molecular-weight heparin, PE = pulmonary embolism, VKA = vitamin K antagonist, VTE = venous thromboembolism.

REVIEW FINDINGS

COMPARISON TO STANDARD THERAPY

The mean differences between DOACs and standard therapy (acute) or discontinuation or placebo (extended) for the pre-specified outcomes are shown below. No studies reported the occurrence of major adverse cardiovascular events (MACE).

In the acute treatment of VTEs, there were no significant differences between any of the DOACs and standard therapy for the prevention of recurrent VTE or any of the other outcomes.
In the extended treatment analysis, patients taking VKAs had a lower risk of recurrent VTE, recurrent DVT, and recurrent PE, and a higher risk of major bleeds compared to patients taking placebo or who discontinued treatment. Dabigatran, but not apixaban (2.5 or 5 mg), rivaroxaban or ASA, was better than discontinuation or placebo for prevention of recurrent VTE, and PE. Dabigatran, but not rivaroxaban, was better than placebo or discontinuation for prevention of recurrent DVT (no evidence for ASA or apixaban). The risk of major bleeding was significantly increased among patients taking rivaroxaban, but not dabigatran, ASA or apixaban (2.5 and 5 mg), relative to among patients taking placebo or who discontinued therapy; however, there was a wide credible interval.

Treatment effects relative to placebo: ACUTE studies

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Recurrent VTE (95% CrI)</th>
<th>Recurrent DVT (95% CrI)</th>
<th>Recurrent PE (total) (95% CrI)</th>
<th>Recurrent PE (fatal) (95% CrI)</th>
<th>Major bleed (95% CrI)</th>
<th>ICH (95% CrI)</th>
<th>All-cause death (95% CrI)</th>
<th>CV death (95% CrI)</th>
<th>Stroke (95% CrI)</th>
<th>ACS (95% CrI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBG 150 mg bid</td>
<td>1.10 (0.42, 2.94)</td>
<td>1.14 (0.31, 4.13)</td>
<td>1.23 (0.33, 4.93)</td>
<td>3.17 (0.73, 11.32)</td>
<td>1.08 (0.25, 4.89)</td>
<td>0.75 (0.28, 1.96)</td>
<td>0.26 (0.01, 2.68)</td>
<td>1.05 (0.39, 2.98)</td>
<td>—</td>
<td>3.10 (0.72, 44.31)</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.98 (0.37, 2.52)</td>
<td>0.91 (0.25, 3.28)</td>
<td>1.18 (0.34, 4.35)</td>
<td>4.55 (0.26, 249.70)</td>
<td>1.10 (0.28, 4.80)</td>
<td>0.54 (0.22, 1.39)</td>
<td>0.34 (0.04, 3.66)</td>
<td>0.96 (0.36, 2.61)</td>
<td>1.55 (0.17, 14.16)</td>
<td>0.53 (0.15, 1.50)</td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.89 (0.23, 3.53)</td>
<td>0.96 (0.15, 5.61)</td>
<td>1.18 (0.34, 4.35)</td>
<td>4.55 (0.26, 249.70)</td>
<td>1.10 (0.28, 4.80)</td>
<td>0.54 (0.22, 1.39)</td>
<td>0.34 (0.04, 3.66)</td>
<td>0.96 (0.36, 2.61)</td>
<td>1.55 (0.17, 14.16)</td>
<td>0.53 (0.15, 1.50)</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.85 (0.21, 3.15)</td>
<td>0.61 (0.09, 3.73)</td>
<td>1.13 (0.18, 7.02)</td>
<td>0.80 (0.08, 4.10)</td>
<td>1.18 (0.16, 8.76)</td>
<td>0.31 (0.08, 1.18)</td>
<td>0.80 (0.02, 8.02)</td>
<td>0.38 (0.02, 1.32)</td>
<td>1.47 (0.59, 4.03)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: ACS = acute coronary syndrome, CV = cardiovascular, DVT = deep vein thrombosis, ICH = intracranial hemorrhage, VTE = venous thromboembolism.

*Statistically significant (p < 0.05).

Treatment effects relative to placebo: EXTENDED therapy

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Recurrent VTE (95% CrI)</th>
<th>Recurrent DVT (95% CrI)</th>
<th>Recurrent PE (total) (95% CrI)</th>
<th>Recurrent PE (fatal) (95% CrI)</th>
<th>Major bleed (95% CrI)</th>
<th>All-cause death (95% CrI)</th>
<th>CV death (95% CrI)</th>
<th>Stroke (95% CrI)</th>
<th>ACS (95% CrI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA 150 mg bid</td>
<td>0.09 (0.03, 0.36)</td>
<td>0.03 (0.00, 0.17)</td>
<td>0.05 (0.00, 0.63)</td>
<td>0.06 (0.00, 0.75)</td>
<td>0.43 (0.09, 1.49)</td>
<td>4.49 (1.30, 13.25)</td>
<td>0.23 (0.01, 2.79)</td>
<td>0.22 (0.01, 1.08)</td>
<td>—</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.10 (0.02, 0.52)</td>
<td>0.05 (0.00, 0.24)</td>
<td>0.08 (0.00, 0.82)</td>
<td>0.09 (0.01, 0.91)</td>
<td>0.90 (0.30, 3.23)</td>
<td>2.91 (0.57, 19.13)</td>
<td>0.21 (0.01, 2.97)</td>
<td>—</td>
<td>0.21 (0.00, 11.62)</td>
</tr>
<tr>
<td>ASA 100 mg qd</td>
<td>0.64 (0.17, 2.38)</td>
<td>—</td>
<td>0.74 (0.06, 9.13)</td>
<td>0.75 (0.06, 8.97)</td>
<td>0.44 (0.12, 3.72)</td>
<td>1.47 (0.19, 28.93)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.19 (0.03, 1.31)</td>
<td>0.28 (0.07, 1.07)</td>
<td>0.23 (0.02, 3.06)</td>
<td>0.12 (0.01, 1.86)</td>
<td>0.62 (0.04, 4.37)</td>
<td>40.13* (4.20, 395.30)</td>
<td>1.73 (0.02, 200.60)</td>
<td>2.21 (0.04, 21.91)</td>
<td>—</td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.19 (0.03, 1.23)</td>
<td>—</td>
<td>0.52 (0.04, 6.38)</td>
<td>0.51 (0.04, 6.26)</td>
<td>9.08 (0.10, 132.90)</td>
<td>0.86 (0.34, 3.90)</td>
<td>2.02 (0.06, 118.50)</td>
<td>0.16 (0.05, 0.80)</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.19 (0.03, 1.31)</td>
<td>—</td>
<td>0.26 (0.02, 3.25)</td>
<td>0.25 (0.02, 3.43)</td>
<td>1.07 (0.04, 13.02)</td>
<td>0.43 (0.09, 1.54)</td>
<td>1.12 (0.03, 66.89)</td>
<td>0.35 (0.10, 0.80)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: ACS = acute coronary syndrome, CV = cardiovascular, DVT = deep vein thrombosis, VTE = venous thromboembolism.

*Statistically significant (p < 0.05).
COMPARISON AMONG THE DOACS

ACUTE TREATMENT

There were no significant differences between any of the DOACs for recurrent VTE, recurrent DVT, recurrent PE, major bleeds, intracranial bleeds, all-cause or cardiovascular death, stroke, or acute coronary syndrome (ACS).

Subgroup data were available only for recurrent VTE (age, weight, renal function, initial PE or DVT) and major bleeds (initial PE or DVT). Data were not sufficient for pooling for time in therapeutic range, and no studies reported the pre-specified outcomes among patients with diabetes or with cardiovascular disease taking antiplatelet agents. There were no significant differences in recurrent VTE by age, weight, renal function, or qualifying event. There were no significant differences in major bleeds by qualifying event (DVT or PE).

EXTENDED TREATMENT

Compared with VKA, ASA was associated with an increased risk of recurrent VTE; however, there was no difference in risk of major bleeding between the two treatments. Patients taking rivaroxaban were at increased risk of recurrent DVT and major bleeding relative to those taking VKA. Patients taking rivaroxaban were also at increased risk of major bleeds compared with dabigatran and ASA. Apixaban (2.5 and 5 mg) was associated with a lower risk of major bleed compared to VKA and rivaroxaban. Apixaban 5 mg was associated with a lower risk of major bleed compared to dabigatran. There were no differences in recurrent VTE between apixaban (2.5 and 5 mg) and VKA, dabigatran, ASA, or rivaroxaban.

There were no differences among the DOACs for recurrent PE, all-cause death, cardiovascular death, and acute coronary syndrome. The risk of major bleeding was increased among patients taking rivaroxaban relative to those taking VKA, ASA, dabigatran, and apixaban (2.5 and 5 mg); however, some of these estimates are based on limited data and should be interpreted with caution.

Subgroup data were available for recurrent VTE by age, weight, renal function, and qualifying event. There were no data for time in therapeutic range or comorbidities (diabetes, patients with cardiovascular disease taking antiplatelet agents).

There was no significant difference in the risk of recurrent VTE among the DOACs by age group or qualifying event.

Compared with discontinuation or placebo, the risk of recurrent VTE was lower among patients who weigh more than 60 kg taking VKA, dabigatran, rivaroxaban, or apixaban. Among patients who weigh less than 60 kg, the risk was lower among patients taking rivaroxaban or apixaban. Compared to VKA, the risk of recurrent VTE was higher among patients who weigh more than 60 kg taking apixaban (2.5 or 5 mg bid); there was no difference in risk among patients who weigh less than 60 kg.
Compared with VKA or dabigatran, the risk of recurrent VTE was increased among patients taking rivaroxaban among patients with creatinine clearance above 80 ml/min but not less than 80 ml/min. The risk of recurrent VTE was lower among patients taking apixaban (2.5 and 5 mg) compared with rivaroxaban among patients with creatinine clearance above 80 ml/min but not less than 80 ml/min.

Comparative HR (95% credible interval) of treatments based on network meta-analyses — Extended treatment

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Comparison</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>ASA 100 mg qd</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent VTE</td>
<td>DBG 150 mg bid v.</td>
<td>1.19 (0.22, 4.80)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent DVT</td>
<td>DBG 150 mg bid v.</td>
<td>1.56 (0.46, 7.14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent PE (total)</td>
<td>DBG 150 mg bid v.</td>
<td>1.49 (0.15, 12.37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major bleeds</td>
<td>DBG 150 mg bid v.</td>
<td>0.58 (0.19, 1.19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracranial bleeds</td>
<td>DBG 150 mg bid v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause death</td>
<td>ASA 100 mg qd v.</td>
<td>0.88 (0.10, 7.85)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV death</td>
<td>ASA 100 mg qd v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>ASA 100 mg qd v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACS</td>
<td>ASA 100 mg qd v.</td>
<td>0.81 (0.02, 46.74)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent VTE</td>
<td>ASA 100 mg qd v.</td>
<td>7.41 (1.00, 41.48)*</td>
<td>6.26 (0.76, 48.86)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent DVT</td>
<td>ASA 100 mg qd v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent PE (total)</td>
<td>ASA 100 mg qd v.</td>
<td>14.48 (0.45, 541.90)</td>
<td>9.44 (0.34, 405.50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major bleeds</td>
<td>ASA 100 mg qd v.</td>
<td>0.19 (0.04, 9.63)</td>
<td>0.32 (0.07, 11.81)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracranial bleeds</td>
<td>ASA 100 mg qd v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause death</td>
<td>ASA 100 mg qd v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV death</td>
<td>ASA 100 mg qd v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>ASA 100 mg qd v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACS</td>
<td>ASA 100 mg qd v.</td>
<td>0.19 (0.01, 0.87)*</td>
<td>0.39 (0.02, 1.75)</td>
<td>0.52 (0.02, 10.87)</td>
<td>0.23 (0.01, 0.87)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent VTE</td>
<td>RVX 20 mg qd v.</td>
<td>2.17 (0.17, 19.64)</td>
<td>1.81 (0.14, 22.76)</td>
<td>0.29 (0.03, 3.07)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent DVT</td>
<td>RVX 20 mg qd v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent PE (total)</td>
<td>RVX 20 mg qd v.</td>
<td>9.58 (1.001, 167.10)*</td>
<td>5.87 (0.70, 79.77)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major bleeds</td>
<td>RVX 20 mg qd v.</td>
<td>4.58 (0.12, 185.90)</td>
<td>2.99 (0.09, 133.60)</td>
<td>0.31 (0.01, 10.79)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracranial bleeds</td>
<td>RVX 20 mg qd v.</td>
<td>7.04 (1.34, 79.20)*</td>
<td>12.59 (2.96, 92.49)*</td>
<td>23.76 (1.30, 706.10)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause death</td>
<td>RVX 20 mg qd v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV death</td>
<td>RVX 20 mg qd v.</td>
<td>1.73 (0.02, 200.60)</td>
<td>1.97 (0.02, 249.60)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>RVX 20 mg qd v.</td>
<td>12.96 (0.16, 526.80)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACS</td>
<td>RVX 20 mg qd v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent VTE</td>
<td>APX 2.5 mg bid v.</td>
<td>2.17 (0.18, 19.30)</td>
<td>1.84 (0.14, 21.60)</td>
<td>0.29 (0.03, 3.03)</td>
<td>0.97 (0.06, 16.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent DVT</td>
<td>APX 2.5 mg bid v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent PE (total)</td>
<td>APX 2.5 mg bid v.</td>
<td>10.07 (0.29, 379.70)</td>
<td>6.56 (0.24, 276.00)</td>
<td>0.70 (0.02, 23.63)</td>
<td>2.19 (0.06, 81.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major bleeds</td>
<td>APX 2.5 mg bid v.</td>
<td>0.23 (0.01, 0.87)*</td>
<td>0.39 (0.02, 1.75)</td>
<td>0.52 (0.02, 10.87)</td>
<td>0.20 (0.00, 0.22)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intracranial bleeds</td>
<td>APX 2.5 mg bid v.</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause death</td>
<td>APX 2.5 mg bid v.</td>
<td>2.02 (0.06, 118.50)</td>
<td>2.22 (0.06, 151.70)</td>
<td></td>
<td>1.12 (0.02, 133.20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV death</td>
<td>APX 2.5 mg bid v.</td>
<td>0.95 (0.07, 32.57)</td>
<td>—</td>
<td></td>
<td>0.10 (0.00, 2.56)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Messages

Acute Treatment
- There were no significant differences between any of the DOACs and standard therapy for recurrent VTE, recurrent PE, recurrent DVT, major bleeds, intracranial hemorrhage, all-cause death, cardiovascular death, stroke, or acute coronary syndrome.
- There were no differences in recurrent VTE by age, weight, renal function, or qualifying event.

Extended Treatment
- Compared to discontinuation or placebo, patients taking VKA or dabigatran had a lower risk of recurrent VTE, recurrent PE, and recurrent DVT.
- Compared to discontinuation or placebo, patients taking VKA or rivaroxaban, but not dabigatran, apixaban or ASA, had an increased risk of major bleeding.
- There were no significant differences between any of the DOACs and placebo/discontinuation for all-cause death, cardiovascular death, stroke, or acute coronary syndrome.
- ASA was associated with an increased risk of recurrent VTE compared with VKA.
- Rivaroxaban was associated with an increased risk of recurrent DVT compared to VKA.
- Rivaroxaban was associated with an increased risk of major bleeds compared with VKA, dabigatran, and ASA. Apixaban (2.5 and 5 mg) was associated with a lower risk of major bleed compared to VKA and rivaroxaban. Apixaban 5 mg was associated with a lower risk of major bleed compared to VKA, dabigatran, and rivaroxaban.
• There were no differences in risk of recurrent VTE among the DOACs when the data were stratified by age (< 75 v. >75 yr).

• Compared with discontinuation or placebo, the risk of recurrent VTE was lower among patients who weigh more than 60 kg taking VKA, dabigatran, rivaroxaban, or apixaban. Among patients who weigh less than 60 kg, the risk was lower among patients taking rivaroxaban or apixaban. The risk of recurrent VTE was higher among patients who weigh more than 60 kg taking apixaban (2.5 or 5 mg bid) compared to VKA; there was no difference in risk among patients who weigh less than 60 kg.

• The risk of recurrent VTE was increased among patients taking rivaroxaban compared with VKA or dabigatran among patients with creatinine clearance above 80 ml/min but not less than 80 ml/min. The risk of recurrent VTE was lower among patients taking apixaban (2.5 and 5 mg) compared with rivaroxaban among patients with creatinine clearance above 80 ml/min but not less than 80 ml/min.
TABLE OF CONTENTS

1. **Introduction** ... 18
 1.1. **Objective** .. 19
 1.2. **Primary research questions** .. 19
2. **Methods** .. 19
 2.1. **Systematic Review** .. 20
 2.1.1. **Population, Intervention, Comparator, Outcome (PICO) statement** 20
 2.1.2. **Outcome definitions** .. 21
 2.1.3. **Study selection** .. 22
 2.1.4. **Data extraction** .. 22
 2.1.5. **Critical appraisal of included studies** .. 23
 2.1.6. **Assessment of publication bias** .. 23
 2.1.7. **Assessment of heterogeneity** .. 23
 2.1.8. **Data analysis methods** ... 23
 2.1.9. **Subgroup analysis** .. 23
 2.2. **Bayesian Network Meta-Analysis** .. 24
 2.2.1. **Heterogeneity** .. 24
 2.2.2. **Consistency** ... 25
 2.2.3. **Model Diagnostics** ... 25
3. **Results** .. 25
 3.1. **Trial and Patient Characteristics** ... 25
 3.2. **Risk of Bias** .. 29
4. **Network meta-analysis** ... 29
 4.1. **ACUTE treatment** ... 29
 4.1.1. **Recurrent VTE** ... 31
 4.1.2. **Recurrent DVT** ... 32
 4.1.3. **Recurrent PE** .. 33
 4.1.4. **Non-fatal recurrent PE** .. 35
 4.1.5. **Fatal recurrent PE** .. 36
 4.1.6. **Major bleeds** ... 37
 4.1.7. **Intracranial bleeds** ... 38
 4.1.8. **All-cause death** ... 39
 4.1.9. **Cardiovascular death** ... 40
 4.1.10. **Stroke** .. 40
 4.1.11. **Acute Coronary Syndrome** .. 41
 4.2. **EXTENDED treatment** .. 41
 4.2.1. **Recurrent VTE** ... 46
 4.2.2. **Recurrent DVT** ... 48
 4.2.3. **Recurrent PE** .. 49
 4.2.4. **Non-fatal recurrent PE** .. 50
 4.2.5. **Fatal recurrent PE** .. 51
 4.2.6. **Major bleeds** ... 52
 4.2.7. **Intracranial bleeds** ... 54
 4.2.8. **All-cause death** ... 54
 4.2.9. **Cardiovascular death** ... 56
Appendix 5: Assessment of Inconsistency

Appendix 4: Risk of Bias

Appendix 3: Excluded PUBLICATIONS

Appendix 2: Included studies

Appendix 1: Search strategy

References
LIST OF TABLES

Table 1: Summary of trial characteristics ... 25
Table 2: Doses of oral anticoagulants ... 26
Table 3: Study characteristics — ACUTE studies ... 29
Table 4: Participant characteristics — ACUTE studies ... 30
Table 5: Treatment effects relative to placebo — ACUTE studies 31
Table 6: Recurrent VTE: Hazard ratios (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment ... 32
Table 7: Recurrent DVT: Hazard ratios (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment .. 33
Table 8: Total recurrent PE (fatal and non-fatal): Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment ... 34
Table 9: Non-fatal recurrent PE: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment ... 35
Table 10: Fatal recurrent PE: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment .. 36
Table 11: Major bleeds: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment .. 37
Table 12: Intracranial bleeds: Hazard ratios (95% CrI) for head-to-head comparisons of DOACs —ACUTE treatment .. 38
Table 13: All-cause death: Hazard ratios (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment .. 39
Table 14: Cardiovascular death: Hazard ratios (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment .. 40
Table 15: Stroke: Hazard ratios (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment .. 41
Table 16: Study Characteristics — EXTENDED treatment... 43
Table 17: Participant characteristics — EXTENDED treatment studies 44
Table 18: Treatment effects relative to placebo or discontinuation — EXTENDED treatment ... 46
Table 19: Recurrent VTE: hazard ratios (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

Table 20: Recurrent DVT: hazard ratios (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

Table 21: Total recurrent PE — Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

Table 22: Non-fatal recurrent PE: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED

Table 23: Fatal recurrent PE: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

Table 24: Major bleeds: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED

Table 25: Major bleeds: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED, zero count trials removed from network

Table 26: All-cause death: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

Table 27: CV death: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

Table 28: Acute coronary syndrome: Hazard ratios (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

Table 29: Recurrent VTEs among patients age 75 years or younger: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

Table 30: Recurrent VTEs among patients aged 75 years or older: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

Table 31: Recurrent VTEs among patients < 60 kg: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

Table 32: Recurrent VTEs among patients > 60 kg: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

Table 33: Recurrent VTEs among patients with creatinine clearance < 80 ml/min: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment
Table 34: Recurrent VTEs among patients with creatinine clearance > 80 ml/min: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment ... 62

Table 35: Recurrent VTEs among patients with initial DVT: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment ... 63

Table 36: Major bleeds among patients with initial DVT: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment ... 64

Table 37: Recurrent VTEs among patients with initial PE: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment ... 65

Table 38: Major bleeds among patients with initial DVT: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment ... 66

Table 39: Recurrent VTEs among patients aged 75 years or younger: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment .. 67

Table 40: Recurrent VTEs among patients aged 75 years or older — Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment .. 68

Table 41: Recurrent VTEs among patients < 60 kg: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment ... 69

Table 42: Recurrent VTEs among patients > 60 kg: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment ... 70

Table 43: Recurrent VTEs among patients with creatinine clearance < 80 ml/min: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment .. 71

Table 44: Recurrent VTEs among patients with creatinine clearance > 80 ml/min: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment .. 72

Table 45: Recurrent VTEs among patients with initial DVT: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment .. 74

Table 46: Recurrent VTEs among patients with initial PE: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment .. 75
LIST OF FIGURES

Figure 1: PRISMA flow diagram ... 26
Figure 2: Evidence network for recurrent VTEs — ACUTE treatment .. 32
Figure 3: Evidence network for recurrent DVT — ACUTE treatment .. 33
Figure 4: Evidence network for recurrent PE (fatal and non-fatal) — ACUTE treatment 34
Figure 5: Evidence network for non-fatal recurrent PE — ACUTE treatment 35
Figure 6: Evidence network for fatal recurrent PE — ACUTE treatment .. 36
Figure 7: Evidence network for major bleeds — ACUTE treatment ... 37
Figure 8: Evidence network for intracranial bleeds — ACUTE treatment ... 38
Figure 9: Evidence network for all-cause death — ACUTE treatment .. 39
Figure 10: Evidence network for CV death — ACUTE treatment ... 40
Figure 11: Evidence network for stroke — ACUTE treatment .. 41
Figure 12: Evidence network for recurrent VTEs — EXTENDED treatment .. 47
Figure 13: Evidence network for recurrent DVT — EXTENDED treatment .. 48
Figure 14: Evidence network for recurrent PE (fatal and non-fatal) — EXTENDED treatment 49
Figure 15: Evidence network for non-fatal PE — EXTENDED treatment .. 50
Figure 16: Evidence network for fatal recurrent PE — EXTENDED treatment 51
Figure 17: Evidence network for major bleeds — EXTENDED treatment ... 53
Figure 18: Evidence network for all-cause death — EXTENDED treatment ... 55
Figure 19: Evidence network for CV death — EXTENDED treatment .. 56
Figure 20: Evidence network acute coronary syndrome — EXTENDED treatment 57
Figure 21: Evidence network recurrent VTE — ACUTE treatment, age subgroups 58
Figure 22: Evidence network recurrent VTE: — ACUTE treatment, weight subgroups 60
Figure 23: Evidence network recurrent VTE — ACUTE treatment, renal function subgroups 61
Figure 24: Evidence network recurrent VTE — ACUTE treatment, initial DVT subgroup 63
Figure 25: Evidence network for major bleeds — ACUTE treatment, initial DVT subgroup 64
Figure 26: Evidence network recurrent VTE — ACUTE treatment, initial PE subgroup .. 65
Figure 27: Evidence network for major bleeds — ACUTE treatment, initial PE subgroup................................. 66
Figure 28: Evidence network recurrent VTE — EXTENDED treatment, age subgroups 67
Figure 29: Evidence network recurrent VTE — EXTENDED treatment, weight subgroups 69
Figure 30: Evidence network recurrent VTE — EXTENDED treatment, renal function subgroups 71
Figure 31: Evidence network recurrent VTE — EXTENDED treatment, initial DVT subgroup 73
Figure 32: Evidence network recurrent VTE — EXTENDED treatment, initial PE subgroup 75
INTRODUCTION

Deep vein thrombosis (DVT) and pulmonary embolism (PE; collectively termed venous thromboembolism (VTE)) are common, result in significant health impact, and are likely to increase with ageing of the population (1). The average annual incidence of VTE is 1 per 1,000 population (2). Based on a population of 34.5 million people in Canada (3), the projected incidence of VTE is 34,500 Canadians per year.

Traditional treatment of VTE involves the initial use of injectable heparin products (i.e., unfractionated heparin [UH] or low-molecular weight heparin [LMWH]) followed by a course of an oral vitamin K antagonist (VKA; e.g., warfarin or acenocoumarol) (4, 5). Oral therapy with VKA is effective for the long-term prevention of VTE recurrence, and the duration of therapy is usually based on the risk of recurrence (assessed on the basis of factors such as malignancy, thrombophilic defects, or previous VTE). The risk of long-term bleeding is also considered in the decision of whether or not to extend therapy beyond the acute phase (4). The risk of recurrence of VTE after completion of initial anticoagulation treatment is estimated to be 5%–10% during the first year (6).

Three direct oral anticoagulants (DOACs) are currently available in Canada (apixaban, dabigatran, rivaroxaban) and are approved for the following indications: post-orthopedic surgery prophylaxis of VTEs, prevention of stroke in patients with atrial fibrillation, treatment of VTEs (including DVT and PE) and prevention of recurrent DVT and PE (i.e., extended therapy). The clinical development program for the latter two indications was recently completed for a fourth DOAC (edoxaban), although this drug is not currently available in Canada. Rivaroxaban was the first DOAC to obtain its notice of compliance (NOC) for DVT and PE; dabigatran and apixaban were granted a NOC for VTE in June 2014 and November 2014, respectively. DOACs belong to two groups: i) direct thrombin inhibitors, ii) direct Factor Xa inhibitors (Table I).

Table I: Direct Oral Anticoagulants

<table>
<thead>
<tr>
<th>Class</th>
<th>Drug</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct thrombin inhibitor</td>
<td>Dabigatran (Pradaxa™)</td>
<td>Boehringer Ingelheim Canada Ltd.</td>
</tr>
<tr>
<td>Direct Factor Xa inhibitor</td>
<td>Rivaroxaban (Xarelto®)</td>
<td>Bayer Inc.</td>
</tr>
<tr>
<td></td>
<td>Apixaban (Eliquis®)</td>
<td>Pfizer Canada Inc/Bristol-Myers Squibb Canada</td>
</tr>
<tr>
<td></td>
<td>Edoxaban (Lixina®)*</td>
<td>Daiichi-Sankyo</td>
</tr>
</tbody>
</table>

*Not available in Canada

DOACs do not require administration by injection as heparin products do and are not subject to the same laboratory monitoring requirements as oral VKAs. They are also less prone to dietary and drug interactions than VKAs. They are, however, more expensive and are associated with less clinical experience, compared with heparin products and VKAs. In particular, management of bleeding complications associated with the use of DOACs may be challenging because of the lack of an agent to reverse their anticoagulant effect.

As the scope of indications approved for DOACs and the number of these drugs increases, the amount of pharmacological treatment options available for the treatment of VTEs expands. Consequently, there is the
need to compare the clinical and cost-effectiveness of DOACs to inform reimbursement policy development activities and clinical practice. Currently, several publicly funded drug programs in Canada provide reimbursement for DOACs, though some restrictions may apply, when used for post-orthopedic surgery VTE prevention and for stroke prevention in patients with atrial fibrillation. Rivaroxaban has been reimbursed by a number of public payers for the treatment of VTE and the prevention of recurrent events for some time; some provincial drug programs now also reimburse apixaban for these indications. As more DOACs receive their NOC for this indication, additional reimbursement decisions will need to be made. In order to inform policy work and clinical decisions, a health technology assessment was undertaken. The Canadian Collaboration for Drug Safety, Effectiveness and Network Meta-Analysis (ccNMA), funded by the Drug Safety and Effectiveness Network (DSEN) of the Canadian Institute of Health Research (CIHR) collaborated with the Canadian Agency for Drugs and Technologies in Health (CADTH) for this project. This health technology assessment includes both a clinical and an economic evaluation. Whereas the first component was done by ccNMA, the economic evaluation was done by CADTH. This report provides findings from the clinical evaluation; findings from the economic evaluation are available in a different report (see: www.cadth.ca).

1.1. OBJECTIVE

The objective of this study was to evaluate the efficacy and harms of DOACs compared to current standard therapy (heparin product followed by oral VKA) for treatment of acute VTE and the efficacy and harms of DOACs compared to oral VKAs for extended therapy for secondary prevention of VTE.

1.2. PRIMARY RESEARCH QUESTIONS

1. What are the efficacy and harms of DOACs compared to current standard therapy for 3 or 6 months treatment of VTE (including PE and DVT)?

2. For extended therapy for the secondary prevention of VTE (including PE and DVT), what are the efficacy and harms of DOACS compared to oral VKA?

2. METHODS

The strategy for building and analyzing the evidence base for the use of DOACs for treatment of VTEs consisted of two fundamental steps:

A broad systematic review and pair-wise meta-analysis of the available randomized evidence in the published and grey literature conducted following the methods and procedures outlined in the Cochrane Handbook for Systematic Reviews of Interventions (7).

A Bayesian network meta-analysis of randomized evidence conducted relating DOACs in a network, for each of the benefit and safety outcomes specified a priori. The methods and procedures followed are those developed by the ccNMA, funded by the DSEN of the CIHR.
2.1. SYSTEMATIC REVIEW

The protocol was developed using guidance from the PRISMA Statement (8) and following the methods and procedures outlined in the Cochrane Handbook for Systematic Reviews of Interventions (7). It was peer-reviewed by experts in pharmacology, biostatistics, and systematic review methodology.

Using the OVID platform, we searched Ovid MEDLINE®, Ovid MEDLINE® In-Process & Other Non-Indexed Citations, and Embase Classic+Embase on November 5, 2014. We also searched CENTRAL in the Cochrane Library on Wiley on the same date. Strategies utilized a combination of controlled vocabulary (e.g., “Venous Thromboembolism”, “Heparin, Low-Molecular-Weight”, “Vitamin K/ai”) and keywords (e.g., VTE, Dabigatran, Fondaparinux). Vocabulary and syntax were adjusted across the databases. We used a validated filter to identify randomized controlled trials.

All database searches were limited from 2008 to the current year. Search dates were conservatively limited to 2008 to restrict returned database records to a timeline consistent with the first published RCTs of the DOACs in the literature, according to expert advice. For RCTs of extended treatment of VTEs, an existing evidence synthesis deemed to be high-quality and comprehensive by the clinical review team was used to extract studies of VKA compared to placebo or discontinuation prior to 2008 (9); within this review, only studies dating back to 1995 were included. The rationale for selecting this cut-off date was the change in practice towards outpatient treatment of VTEs with LMWH as evidence started to emerge in 1996 for this treatment strategy. Individual studies were extracted from the review and put through the same full-text screening and review process as those located through the database search.

A grey literature search of relevant databases and web sites was performed using resources listed in CADTH’s Grey Matters Light (www.cadth.ca/en/resources/finding-evidence-is/grey-matters/grey-matters-light). Specific details regarding the strategies appear in Appendix 1. This review has been registered in the PROSPERO database (CRD42015015010).

2.1.1. POPULATION, INTERVENTION, COMPARATOR, OUTCOME (PICO) STATEMENT

Studies were eligible for inclusion in the systematic review if they satisfied the population, intervention, and comparator, as well as the study designs of interest.

Study population

The study population consists of patients with acute or prior VTE, including DVT and PE.

Intervention:
- Apixaban
- Dabigatran
- Rivaroxaban
- Edoxaban
Comparator groups

Allowable comparisons include:

ACUTE studies: standard therapy (LMWH + VKA)

EXTENDED studies: placebo or treatment discontinuation, acetylsalicylic acid (ASA), VKA

Outcome(s) of interest:

Efficacy outcomes:
- Recurrent VTE
- Recurrent DVT
- Recurrent PE (fatal, non-fatal)

Safety outcomes:
- Major bleeding
- Intracranial bleeding
- All-cause death
- Cardiovascular death
- Major adverse cardiovascular events (MACE)
- Stroke
- Acute coronary syndrome (ACS)

Study designs:

ACUTE treatment studies: Randomized controlled trials (RCTs)

EXTENDED treatment studies: RCTs in which patients had received acute treatment for at least 3 months.

Crossover studies were eligible for inclusion; however, only first-period data were included in the analysis.

Conference abstracts were eligible for inclusion if they were a companion to an included RCT and if they provided additional data beyond that in the published record (e.g., subgroup analysis).

2.1.2. OUTCOME DEFINITIONS

Recurrent VTE: Non-compressible segment found on compression leg vein ultrasound imaging, intraluminal filling defect on venography, abnormal impedance plethysmography, high-probability ventilation-perfusion, or pulmonary artery filling defect on computed tomography or pulmonary angiography. This outcome includes and combines both recurrent DVT and recurrent PE, as reported in the primary studies. Both recurrent PE and recurrent DVT were also considered separately in the analyses.

Major bleeding: clinically overt bleeding associated with at least one of the following: 1) a decrease in hemoglobin levels of at least 2 g/dl; 2) transfusion of 2 or more units of packed red blood cells; 3) intracranial,
Intracranial bleeding: as defined by the investigator of each individual study.

All-cause death: death from any cause.

Cardiovascular death: death from an acute myocardial infarction, sudden cardiac death, death due to heart failure, death due to stroke, and death from other cardiovascular causes (e.g., procedure used to treat myocardial infarction or ischemia).

Stroke: As defined by the authors of each primary study.

Acute coronary syndrome: As defined by the authors of each primary study.

Major adverse cardiovascular events: composite outcome comprised of myocardial infarction, stroke, and cardiovascular death, or as defined by the authors of each primary study.

Note:

Data were extracted and analyzed for the on-treatment period only. For acute studies, this may include a 30 day follow-up period where noted in the table of characteristics. For extended studies, only events that occurred during the treatment period were included. Studies that did not report treatment period data separately were not included in the on-treatment analysis.

2.1.3. STUDY SELECTION

Eligibility criteria were applied to each title and abstract identified in the literature search by two independent review authors in a standardized manner. Any trial that was considered to be relevant by one reviewer was retrieved for review and obtained in full-text format. The full text of each potentially relevant article was independently assessed by two reviewers, and a final decision made for inclusion. Full-text records of all studies located from an existing evidence synthesis were also screened in full-text format to ensure they met the eligibility criteria. Any uncertainties were resolved by discussion and consensus with a third review author. Reviewers did not remain blind to study authors or centre of publication prior to study selection.

2.1.4. DATA EXTRACTION

One reviewer extracted data from selected trials, and a second reviewer checked the data for accuracy. All data were extracted using a standardized data abstraction form, and the following attributes of each RCT were entered into a database:

1. Characteristics of trial participants;
2. Study design characteristics;
3. Details on each study arm/pharmacologic intervention, including but not limited to dose, frequency, route of administration, duration, and co-medication; and,
4. Data for clinical efficacy/effectiveness and safety outcomes.

The original, primary publication for each unique study was included and used for data extraction, except in the case of multiple publications for a single RCT. Multiple publications (e.g. supplemental online appendices, companion publications of specific outcomes or populations from the original study, conference abstracts) were handled by extracting the most recently and detailed adjudicated data for each outcome specified a priori.

2.1.5. CRITICAL APPRAISAL OF INCLUDED STUDIES

Risk of study bias was assessed using the Cochrane Collaboration’s tool for assessing risk of bias (ROB) for RCTs (7).

2.1.6. ASSESSMENT OF PUBLICATION BIAS

Reporting bias was assessed by constructing funnel plots, as well as bias indicators (e.g. Egger, Harbold-Egger) for each outcome (10) if data were sufficient.

2.1.7. ASSESSMENT OF HETEROGENEITY

Included studies were assessed for both clinical and methodological diversity. Clinical diversity was assessed by examining that the participants, interventions, and comparators were not too different from each other such that combining them was inappropriate. Methodological diversity was also assessed by checking that the studies were similar in terms of study design and risk of bias.

2.1.8. DATA ANALYSIS METHODS

Meta-analyses were undertaken using fixed- or random-effects models if data were available, sufficiently similar, and of sufficient quality. The effect sizes for the identified dichotomous outcomes were expressed in terms of hazard ratios (HRs) and 95% credible intervals (Crl). Person-years were calculated by multiplying the number of patients in each treatment time by the treatment duration.

2.1.9. SUBGROUP ANALYSIS

Subgroups were selected a priori to compare the treatment effect across variants in the population for which a plausible difference in efficacy or safety may exist. Subgroups selected were justified against the criteria
proposed by Sun and colleagues (11)(12); wherein the greater the number of criteria that are satisfied for each subgroup and outcome, the more plausible is the hypothesized subgroup effect.

Subgroups specified a priori were:
- Age
- Quality of INR control/TTR
- Patient weight
- Renal function
- Co-morbidities (diabetes, cardiovascular disease using antiplatelet therapy)

2.2. BAYESIAN NETWORK META-ANALYSIS

Bayesian mixed treatment comparison (MTC) meta-analyses were conducted for the following outcomes: recurrent VTE, recurrent DVT, recurrent PE (fatal and non-fatal), major bleeds, acute coronary syndrome, major adverse cardiovascular events, stroke, cardiovascular death, all-cause death and intracranial bleeding. WinBUGS software (MRC Biostatistics Unit, Cambridge, UK) was used to conduct Bayesian MTC meta-analysis using a binomial likelihood model which allows for the use of multi-arm trials (13, 14). Placebo or discontinuation (EXTENDED) or standard therapy (ACUTE) were chosen as the reference group or index node in the model. Both fixed- and random-effects network meta-analyses were conducted; assessment of model fit and choice of model was based on assessment of the deviance information criterion (DIC) and comparison of residual deviance to number of unconstrained data points (13, 15).

Point estimates and 95% credible intervals for HRs were derived using Markov Chain Monte Carlo (MCMC) methods. Vague priors, such as $N(0, 100^2)$, were assigned for basic parameters throughout (13), and informative priors were considered for the variance parameter were based on Turner and colleagues (16). To ensure model convergence was reached, trace plots and the Brooks-Gelman-Rubin statistic were assessed (17). Three chains were fit in WinBUGS for each analysis, with at least 20,000 iterations, and a burn-in of at least 20,000 iterations (17) (18).

2.2.1. HETEROGENEITY

Both MTC and traditional meta-analysis require studies to be sufficiently similar in order to pool their results. As a result, heterogeneity across trials in terms of patient characteristics, trial methodologies, and treatment protocols across trials was carefully assessed.

To further investigate heterogeneity, where warranted, subgroup analyses were considered, although limited data precluded many analyses considered.
2.2.2. CONSISTENCY

Inconsistency was formally assessed by comparing the deviance and DIC statistics of the consistency and inconsistency models (21). To help identify the loops in which inconsistency was present, the posterior mean deviance of the individual data points in the inconsistency model was plotted against their posterior mean deviance in the consistency model (19).

2.2.3. MODEL DIAGNOSTICS

Model diagnostics including trace plots and the Brooks-Gelman-Rubin statistic were assessed to ensure model convergence (17) (13).

3. RESULTS

The initial literature search returned 3,213 database abstracts. A total of 9 records were identified through additional searching and from an existing evidence synthesis (9). After duplicates were removed, 3,222 remained to be assessed for inclusion and 2,899 were excluded. Of the 323 full-text articles reviewed, 198 were excluded for a variety of reasons as described in the PRISMA flow diagram (Figure 1). A total of 88 conference abstracts were identified and were included if they were deemed to be a companion of an included publication (n = 26). For EXTENDED treatment of VTE, 8 studies of VKA compared to placebo or discontinuation were identified using an existing high quality evidence synthesis (9); of these, 4 were ultimately included in the analysis. A total of 6 unique RCTs reported in 18 publications of ACUTE VTE treatment were included. Eleven unique RCTs reported in 19 publications for EXTENDED VTE treatment were included.

3.1. TRIAL AND PATIENT CHARACTERISTICS

The included studies are listed in Appendix 2, and the excluded studies (at full-text screening) are listed in Appendix 3. The included RCTs were published between 1997 and 2014, and involved a total of 36,188 participants (26,860 ACUTE; 9,328 EXTENDED). All of the acute studies were funded by pharmaceutical companies, while there was a mixture of funding among the extended studies (Table 1).

Table 1: Summary of trial characteristics

<table>
<thead>
<tr>
<th>Trial characteristics</th>
<th>Category</th>
<th>No. of included studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ACUTE</td>
</tr>
<tr>
<td>Publication status</td>
<td>Literature sources</td>
<td>18 (+ 14 abstracts)</td>
</tr>
<tr>
<td></td>
<td>Unique RCTs</td>
<td>6</td>
</tr>
<tr>
<td>Country</td>
<td>Single country</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Multi-national</td>
<td>6</td>
</tr>
</tbody>
</table>
The doses and duration of treatment are described in Table 2. For acute treatment of VTE, LMWH was the initial treatment for studies involving dabigatran or edoxaban; studies involving apixaban or rivaroxaban had no initial treatment with LMWH; however, patients were started at a higher initial dose of the DOAC (Table 2).

Although the study by Schulman and colleagues (DURACII) (20) was included based on the PICO statement, this trial reported the combined results for the acute (months 0–6) and extended therapy (up to 4 years). As such, we were unable to determine which events occurred during the acute phase and which occurred during the extended phase. Data from this study were not included in our analyses.

Table 2: Doses of oral anticoagulants

<table>
<thead>
<tr>
<th>DOAC</th>
<th>Included doses</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACUTE therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apixaban</td>
<td>5 mg bid</td>
<td>Initial treatment of 10 mg bid for 7 d</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>150 mg bid</td>
<td>Initial treatment with LMWH</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>20 mg qd</td>
<td>Initial treatment of 15 mg bid for 3 wk</td>
</tr>
<tr>
<td>Edoxaban</td>
<td>30 mg or 60 mg qd</td>
<td>Initial treatment with LMWH; patients with creatinine clearance of 30–50 ml/min or weight ≤ 60 kg or receiving potent P-glycoprotein inhibitors received 30 mg qd; all others received 60 mg qd</td>
</tr>
<tr>
<td>EXTENDED therapy</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Trial characteristics

<table>
<thead>
<tr>
<th>Category</th>
<th>No. of included studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td></td>
</tr>
<tr>
<td>Parallel</td>
<td>ACUTE: 6</td>
</tr>
<tr>
<td>Factorial</td>
<td>0</td>
</tr>
<tr>
<td>Cross-over</td>
<td>0</td>
</tr>
<tr>
<td>No. of arms</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ACUTE: 6</td>
</tr>
<tr>
<td>3</td>
<td>ACUTE: 0</td>
</tr>
<tr>
<td>>3</td>
<td>0</td>
</tr>
<tr>
<td>Sponsors</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical</td>
<td>ACUTE: 6</td>
</tr>
<tr>
<td>Non-Pharmaceutical</td>
<td>0</td>
</tr>
<tr>
<td>Mixed</td>
<td>0</td>
</tr>
<tr>
<td>Not reported</td>
<td>0</td>
</tr>
<tr>
<td>Publication year</td>
<td></td>
</tr>
<tr>
<td>2008 to 2014</td>
<td></td>
</tr>
<tr>
<td>No. randomized</td>
<td></td>
</tr>
<tr>
<td>258 to 8240</td>
<td></td>
</tr>
<tr>
<td>DOAC</td>
<td>Included doses</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Apixaban</td>
<td>2.5 or 5 mg bid</td>
</tr>
<tr>
<td>Dabigatran</td>
<td>150 mg bid</td>
</tr>
<tr>
<td>Rivaroxaban</td>
<td>20 mg qd</td>
</tr>
<tr>
<td>Acetylsalicylic acid</td>
<td>100 mg qd</td>
</tr>
</tbody>
</table>

Note: bid = twice daily, LMWH = low-molecular-weight heparin, DOAC = new oral anticoagulant, qd = once daily.
Figure 1: PRISMA flow diagram

*Includes 8 warfarin studies and one protocol.
†Schulman 2013 reports on two unique trials, both extended treatment (RE-MEDY, RE-SONATE). This report is counted once in the list of included records, but is counted twice under “unique trials”.
‡Bauersach 2010 (EINSTEIN Investigators) reports on two unique trials, one extended and one acute treatment (EINSTEIN acute, EINSTEIN extended). This publication has been counted in “included records” for the acute studies and not for extended studies. Each trial is included in the count for “unique trials” for acute and extended.
3.2. RISK OF BIAS

The risk of bias of the 17 included RCTs that reported outcome data of interest is presented in Appendix 4. The overall risk of bias was generally low for most studies, and most were well-reported.

Allocation concealment was inconsistently reported in a number of studies. In 4 of 17 studies, insufficient details were reported to allow judgment of the risk of bias, resulting in a rating of “unclear.” One study was rated as being at high risk of bias for incomplete outcome data addressed for efficacy and safety outcomes (21). In this study (AMPLIFY-EXT), all randomized participants were included in the analysis except for two in each of 2.5 mg and 5 mg apixaban groups, whose verifiable source documentation was lacking. In addition, 23% (188/829), 14% (114/842), and 16% (129/815) of participants in the placebo, apixaban 2.5 mg, and 5 mg groups discontinued the study prematurely. The comparatively lower completion rate in placebo group, in addition to the handling of the missing data for primary efficacy outcomes, may have increased the number of events in the placebo group and therefore decreased the apparent risk in the apixaban 2.5 mg and 5 mg groups. This uncertainty is worsened by the fact that a large percentage participants in the placebo group (67%, 126/188) withdrew because of adverse events.

4. NETWORK META-ANALYSIS

Network meta-analyses were conducted for following outcomes: recurrent VTE, recurrent DVT, recurrent PE (total, fatal, non-fatal), major bleeding, intracranial bleeding, stroke, all-cause death, and CV death. The choice of these outcomes for network meta-analysis was based on the sufficiency of the data available to derive robust and consistent network models. No studies reported MACE.

The consistency of all networks with closed loops was assessed. The inconsistency v. consistency plots are presented in Appendix 5.

4.1. ACUTE TREATMENT

In total, 6 studies met the criteria for inclusion (Table 3). These studies all involved comparison of a DOAC with standard care, which was typically unfractionated heparin (UH) or low-molecular weight heparin (LMWH) followed by warfarin. All studies had a target INR of 2.0–3.0. Each study, except for HOKUSAI-VTE, included a 30-day observational period following the end of treatment.

Table 3: Study characteristics — ACUTE studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Treatment</th>
<th>Treatment duration</th>
<th>End of study</th>
<th>Length of follow-up</th>
<th>No. randomized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Comparator</td>
<td>Intervention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schulman</td>
<td>Acute</td>
<td>DBG, 150 mg, BID</td>
<td>6 mo</td>
<td>1 additional follow-up</td>
<td>7 mo</td>
<td>1283</td>
</tr>
</tbody>
</table>
Most trials of acute therapy enrolled more men than women, and the mean age in each acute trial was less than 60 years (Table 4). A higher proportion of participants had a DVT as the qualifying event (v. PE). The presence of comorbidities or risk factors (surgery, immobilization, cancer, thrombophilia) was not well reported.

Table 4: Participant characteristics — ACUTE studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparator/intervention</th>
<th>% of participants*; comparator/intervention 1/intervention 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean age, yr</td>
<td>Men</td>
</tr>
<tr>
<td>Schulman 2009: RE-COVER</td>
<td>VKA/DBG</td>
<td>54/55</td>
</tr>
<tr>
<td>Buller 2013: HOKUSAI-VTE</td>
<td>VKA/EDX</td>
<td>56/56</td>
</tr>
<tr>
<td>Bauersachs 2010: EINSTEIN</td>
<td>VKA/RVX</td>
<td>56/56</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, bid = twice daily, DBG = dabigatran, EDX = edoxaban, DVT = deep vein thrombosis, LMWH = low-molecular-weight heparin, PE = pulmonary embolism, qd = once daily, RVX = rivaroxaban, UH = unfractionated heparin, VTE = venous thromboembolism.
Study Comparator/intervention % of participants*; comparator/intervention 1/intervention 2

EINSTEIN

<table>
<thead>
<tr>
<th>Comparator/intervention</th>
<th>Mean age, yr</th>
<th>Men</th>
<th>DVT</th>
<th>PE</th>
<th>PE +/- DVT</th>
<th>Unprovoked VTE</th>
<th>Surgery</th>
<th>Immobilization</th>
<th>Cancer</th>
<th>Known thrombophilia</th>
</tr>
</thead>
<tbody>
<tr>
<td>EINSTEIN - B</td>
<td>58/58</td>
<td>52/54</td>
<td>PE only</td>
<td>75/75</td>
<td>25/25</td>
<td>64/65</td>
<td>17/17†</td>
<td>16/16</td>
<td>5/5</td>
<td>5/6</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, DVT = deep vein thrombosis, EDX = edoxaban, PE = pulmonary embolism, RVX = rivaroxaban, VKA = vitamin k antagonist, VTE = venous thromboembolism.

*Unless otherwise stated.

†Temporary risk factor (recent surgery, trauma, immobilization, or use of estrogen: 28% of patients in each group.

‡Recent surgery or trauma.

Compared with placebo, there were no significant differences in outcomes for any of the DOACs (Table 5).

Table 5: Treatment effects relative to placebo — ACUTE studies

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Recurrent VTE</th>
<th>Recurrent DVT</th>
<th>Recurrent PE (total)</th>
<th>Recurrent PE (fatal)</th>
<th>Recurrent PE (non-fatal)</th>
<th>Major bleed</th>
<th>ICH</th>
<th>All-cause death</th>
<th>CV death</th>
<th>Stroke</th>
<th>ACS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBG 150 mg bid</td>
<td>1.10 (0.42, 2.94)</td>
<td>1.14 (0.31, 4.13)</td>
<td>1.23 (0.33, 4.93)</td>
<td>3.17 (0.73, 11.32)</td>
<td>1.08 (0.25, 4.89)</td>
<td>0.75 (0.28, 2.96)</td>
<td>0.26 (0.01, 2.68)</td>
<td>1.05 (0.39, 2.98)</td>
<td>—</td>
<td>3.10 (0.72, 14.31)</td>
<td>1.70 (0.26, 11.69)</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.98 (0.37, 2.52)</td>
<td>0.91 (0.25, 3.28)</td>
<td>1.18 (0.34, 4.35)</td>
<td>4.55 (0.26, 249.70)</td>
<td>1.10 (0.28, 4.80)</td>
<td>0.54 (0.22, 1.39)</td>
<td>0.34 (0.04, 3.66)</td>
<td>0.96 (0.36, 2.61)</td>
<td>—</td>
<td>1.55 (0.17, 14.16)</td>
<td>0.53 (0.15, 1.50)</td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.89 (0.23, 3.53)</td>
<td>0.90 (0.15, 5.61)</td>
<td>0.86 (0.14, 5.03)</td>
<td>1.31 (0.24, 7.19)</td>
<td>0.82 (0.11, 6.32)</td>
<td>0.85 (0.23, 3.07)</td>
<td>0.34 (0.04, 3.66)</td>
<td>0.26 (0.02, 0.43)</td>
<td>1.06 (0.27, 4.24)</td>
<td>—</td>
<td>1.25 (0.06, 25.01)</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.85 (0.21, 3.15)</td>
<td>0.61 (0.09, 3.73)</td>
<td>1.13 (0.18, 7.02)</td>
<td>0.80 (0.08, 4.10)</td>
<td>1.18 (0.16, 8.76)</td>
<td>0.31 (0.08, 1.18)</td>
<td>0.48 (0.02, 8.02)</td>
<td>0.80 (0.19, 3.20)</td>
<td>—</td>
<td>0.38 (0.02, 9.40)</td>
<td>1.47 (0.59, 4.03)</td>
</tr>
</tbody>
</table>

Note: ACS = acute coronary syndrome, APX = apixaban, CV = cardiovascular, DBG = dabigatran, DVT = deep vein thrombosis, EDX = edoxaban, ICH = intracranial hemorrhage, PE = pulmonary embolism, RVX = rivaroxaban, VKA = vitamin k antagonist, VTE = venous thromboembolism.

*Statistically significant (p < 0.05).

4.1.1. RECURRENT VTE

The evidence network for recurrent VTE included 6 studies (6, 22-26) and a total of 27, 122 participants. Overall, 5 different treatments were considered, providing for 6 comparisons based on 6 studies designed with 2 treatment arms (Figure 2).
There were no significant differences in the recurrence of VTE between any of the DOACs and standard therapy, and there were no significant differences in the head-to-head comparisons of the DOACs (Table 6).

Table 6: Recurrent VTE: Hazard ratios (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBG 150 mg bid</td>
<td>1.10 (0.42, 2.94)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.98 (0.37, 2.52)</td>
<td>0.90 (0.21, 3.38)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.89 (0.23, 3.53)</td>
<td>0.81 (0.15, 4.34)</td>
<td>0.90 (0.18, 5.01)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.85 (0.21, 3.15)</td>
<td>0.76 (0.14, 3.88)</td>
<td>0.86 (0.16, 4.42)</td>
<td>0.95 (0.14, 6.11)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, EDX = edoxaban, RVX = rivaroxaban.

4.1.2. RECURRENT DVT

The evidence network for recurrent DVT included 6 studies (6, 22-26) and a total of 27, 122 participants. Overall, 5 different treatments were considered, providing for 6 comparisons based on 6 studies each with 2 treatment arms (Figure 3).
There were no significant differences in recurrent DVT between any of the DOACs and standard therapy, and there were no significant differences in the head-to-head comparisons of the DOACs (Table 7).

Table 7: Recurrent DVT: Hazard ratios (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBG 150 mg bid</td>
<td></td>
<td>1.14 (0.31, 4.13)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.91 (0.25, 3.28)</td>
<td>0.80 (0.13, 5.02)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.90 (0.15, 5.61)</td>
<td>0.79 (0.09, 7.14)</td>
<td>0.99 (0.11, 8.80)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.61 (0.09, 3.73)</td>
<td>0.53 (0.06, 4.98)</td>
<td>0.66 (0.07, 5.99)</td>
<td>0.67 (0.05, 8.30)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, EDX = edoxaban, RVX = rivaroxaban.

4.1.3. RECURRENT PE

The evidence network for recurrent PE included 6 studies (6, 22-26) and a total of 27,122 participants. Overall, 5 different treatments were considered, providing for 6 comparisons based on 6 studies designed with 2 treatment arms each (Figure 4).
There were no significant differences in recurrent PE between any of the DOACs and standard therapy, and there were no significant differences in the head-to-head comparisons of the DOACs (Table 8). Both fatal and non-fatal PE was considered for this outcome.

Table 8: Total recurrent PE (fatal and non-fatal): Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBG 150 mg bid</td>
<td>1.23 (0.33, 4.93)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>1.18 (0.34, 4.35)</td>
<td>0.96 (0.14, 6.19)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.86 (0.14, 5.03)</td>
<td>0.70 (0.07, 6.38)</td>
<td>0.72 (0.08, 6.32)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>1.13 (0.18, 7.02)</td>
<td>0.91 (0.09, 8.54)</td>
<td>0.96 (0.10, 8.46)</td>
<td>1.31 (0.09, 16.91)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, EDX = edoxaban, RVX = rivaroxaban.
4.1.4. NON-FATAL RECURRENT PE

The evidence network for non-fatal recurrent PE included 6 studies (6, 22-26) and a total of 27,122 participants. Overall, 5 different treatments were considered, providing for 6 comparisons based on 6 studies designed with 2 treatment arms each (Figure 5).

Figure 5: Evidence network for non-fatal recurrent PE — ACUTE treatment

There were no significant differences in non-fatal recurrent PE between any of the DOACs and standard therapy, and there were no significant differences in the head-to-head comparisons of the DOACs (Table 9).

Table 9: Non-fatal recurrent PE: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBG 150 mg bid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>1.10 (0.28, 4.80)</td>
<td>1.03 (0.13, 8.19)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.82 (0.11, 6.32)</td>
<td>0.76 (0.06, 9.41)</td>
<td>0.75 (0.06, 8.77)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>1.18 (0.16, 8.76)</td>
<td>1.10 (0.09, 12.94)</td>
<td>1.08 (0.09, 12.10)</td>
<td>1.43 (0.08, 23.46)</td>
<td></td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, EDX = edoxaban, RVX = rivaroxaban.
4.1.5. Fatal Recurrent PE

The evidence network for fatal recurrent PE included 5 studies (6, 23-26) and a total of 24,558 participants. Overall, 5 different treatments were considered, providing for 6 comparisons based on 5 studies designed with 2 treatment arms each (Figure 6).

Figure 6: Evidence network for fatal recurrent PE — ACUTE treatment

There were no significant differences in recurrent non-fatal PE between any of the DOACs and standard therapy, and there were no significant differences in the head-to-head comparisons of the DOACs (Table 10). The 95% confidence interval for dabigatran compared with standard therapy was large (0.26, 249.70); one study contributed to this comparison, with zero events in the standard therapy arm and 3 events in the dabigatran arm.

Table 10: Fatal recurrent PE: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>RVX 20 mg qd</th>
<th>DBG 150 MG bid</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVX 20 mg qd</td>
<td>3.17 (0.73, 11.32)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBG 150 MG bid</td>
<td>4.55 (0.26, 249.70)</td>
<td>1.72 (0.06, 37.45)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>1.31 (0.24, 7.19)</td>
<td>0.41 (0.06, 2.76)</td>
<td>0.32 (0.01, 4.68)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.80 (0.08, 4.10)</td>
<td>0.27 (0.02, 1.39)</td>
<td>0.13 (0.01, 4.86)</td>
<td>0.53 (0.04, 6.38)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, EDX = edoxaban, RVX = rivaroxaban.
4.1.6. MAJOR BLEEDS

The evidence network for major bleeds included 6 studies (6, 22-26) and a total of 27,122 participants. Overall, 5 different treatments were considered, providing for 6 comparisons based on 6 studies designed with 2 treatment arms each (Figure 7).

Figure 7: Evidence network for major bleeds — ACUTE treatment

There were no significant differences in major bleeds between any of the DOACs and standard therapy, and there were no significant differences in the head-to-head comparisons of the DOACs (Table 11).

Table 11: Major bleeds: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBG 150 mg bid</td>
<td>0.75 (0.28, 1.96)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.54 (0.22, 1.39)</td>
<td>0.72 (0.20, 2.93)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.85 (0.23, 3.07)</td>
<td>1.14 (0.23, 5.59)</td>
<td>1.57 (0.31, 7.82)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.31 (0.08, 1.18)</td>
<td>0.40 (0.08, 2.12)</td>
<td>0.56 (0.10, 2.80)</td>
<td>0.36 (0.05, 2.34)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, EDX = edoxaban, RVX = rivaroxaban.
4.1.7. INTRACRANIAL BLEEDS

The evidence network for major bleeds included 6 studies (6, 22-26) and a total of 27,122 participants. Overall, 5 different treatments were considered, providing for 6 comparisons based on 6 studies designed with 2 treatment arms each (Figure 8).

Figure 8: Evidence network for intracranial bleeds — ACUTE treatment

There were no significant differences in intracranial bleeds between any of the DOACs and standard therapy, and there were no significant differences in the head-to-head comparisons of the DOACs (Table 12).

Table 12: Intracranial bleeds: Hazard ratios (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBG 150 mg bid</td>
<td>0.26 (0.01, 2.68)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.34 (0.04, 3.66)</td>
<td>1.29 (0.06, 59.74)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.26 (0.02, 4.03)</td>
<td>0.99 (0.03, 62.57)</td>
<td>0.79 (0.02, 24.84)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.48 (0.02, 8.02)</td>
<td>1.84 (0.05, 119.20)</td>
<td>1.41 (0.03, 47.85)</td>
<td>1.87 (0.03, 89.59)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, EDX = edoxaban, RVX = rivaroxaban.
4.1.8. **ALL-CAUSE DEATH**

The evidence network for all-cause death included 6 studies (6, 22-26) and a total of 27,122 participants. Overall, 5 different treatments were considered, providing for 6 comparisons based on 6 studies designed with 2 treatment arms each (Figure 9).

Table 13: All-cause death: Hazard ratios (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBG 150 mg bid</td>
<td>1.05 (0.39, 2.98)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.96 (0.36, 2.61)</td>
<td>0.91 (0.21, 3.74)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>1.06 (0.27, 4.24)</td>
<td>1.02 (0.18, 5.48)</td>
<td>1.10 (0.20, 6.25)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.80 (0.19, 3.20)</td>
<td>0.74 (0.13, 4.28)</td>
<td>0.83 (0.14, 4.60)</td>
<td>0.76 (0.10, 5.33)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, EDX = edoxaban, RVX = rivaroxaban.
4.1.9. CARDIOVASCULAR DEATH

The evidence network for cardiovascular death included 4 studies (6, 24-26) and a total of 21,969 participants. Overall, 4 different treatments were considered, providing for 4 comparisons based on 4 studies designed with 2 treatment arms each (Figure 10).

Figure 10: Evidence network for CV death — ACUTE treatment

![Evidence network for CV death — ACUTE treatment](image)

There were no significant differences in CV death between any of the DOACs and standard therapy, and there were no significant differences in the head-to-head comparisons of the DOACs (Table 14).

Table 14: Cardiovascular death: Hazard ratios (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVX 20 mg qd</td>
<td>1.55 (0.17, 14.16)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>1.25 (0.06, 25.01)</td>
<td>0.81 (0.02, 34.02)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.38 (0.02, 9.40)</td>
<td>0.24 (0.00, 13.03)</td>
<td>0.30 (0.00, 24.57)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, EDX = edoxaban, RVX = rivaroxaban.

4.1.10. STROKE

The evidence network for stroke included 4 studies (6, 22, 23, 25) and a total of 13,997 participants. Overall, 4 different treatments were considered, providing for 4 comparisons based on 4 studies designed with 2 treatment arms (Figure 11).
There were no significant differences in stroke between any of the DOACs and standard therapy, and there were no significant differences in the head-to-head comparisons of the DOACs (Table 15).

Table 15: Stroke: Hazard ratios (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBG 150 mg bid</td>
<td>3.10 (0.72, 44.31)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.53 (0.15, 1.50)</td>
<td>0.16 (0.01, 1.13)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>1.47 (0.59, 4.03)</td>
<td>0.46 (0.03, 3.80)</td>
<td>2.81 (0.68, 15.18)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, RVX = rivaroxaban.

4.1.11. ACUTE CORONARY SYNDROME

The evidence network for ACS included 2 studies (22, 23) and a total of 5,153 participants. Overall, 2 treatments were considered, providing for 2 comparisons based on 2 studies designed with 2 treatment arms comparing dabigatran 150 mg bid to standard therapy.

There were no significant differences in stroke between standard therapy and dabigatran (1.70, 95% CrI 0.26, 11.69).

4.2. EXTENDED TREATMENT

Eleven studies met the inclusion and exclusion criteria; 10 of these were included in the network meta-analysis. The study by Schulman and colleagues (DURACII) (20) reported the combined results for the acute (months 0–6) and extended therapy (up to 4 years) periods. We were unable to determine which events occurred during the
acute phase and which occurred during the extended phase; as such, these data were not included in our analyses.

Most studies included patients with unprovoked VTE; however, some did not comment on whether the qualifying event was provoked or unprovoked (Table 16). The initial duration of treatment (acute) was at least 3 months in all studies, and the duration of extended therapy was between 3 months and 4 years.

The mean age of participants ranged from 53 years in the VKA arm of AUREC-VFIII to 68 years in the discontinuation arm of the WODIT-DVT trial. Most trials enrolled more men than women; however, the WODIT-PE and AUREC-VFIII trials enrolled more than 50% women. Patients with provoked VTE were excluded in most trials (LAFIT, WODIT-DVT, AUREC-VFII, WARFASA, ASPIRE). RE-SONATE and RE-MEDY allowed patients with immobilization or known thrombophilia; however, only a small proportion of patients had these risk factors (Table 17).
Table 16: Study Characteristics —EXTENDED treatment

<table>
<thead>
<tr>
<th>Study</th>
<th>Population</th>
<th>Initial acute therapy</th>
<th>Extended therapy</th>
<th>End of study</th>
<th>Length of follow-up; comparator/intervention</th>
<th>No. randomized</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Treatment</td>
<td>Duration</td>
<td>Treatment</td>
<td>Treatment duration</td>
<td>Comparator 1</td>
</tr>
<tr>
<td>Standard-dose VKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keaton 1999: LAFIT</td>
<td>Unprovoked VTE</td>
<td>UH or LMWH, followed</td>
<td>3 mo</td>
<td>Placebo/VKA</td>
<td>24 mo after randomization</td>
<td>Mean: 9 / 12 mo</td>
</tr>
<tr>
<td>Agnelli 2001: WODIT-DVT</td>
<td>Symptomatic first unprovoked DVT</td>
<td>UH or LMWH, followed</td>
<td>3 mo</td>
<td>Discont. /VKA</td>
<td>9 mo</td>
<td>Mean: 37.0 / 37.8 mo</td>
</tr>
<tr>
<td>Agnelli 2003: WODIT-PE</td>
<td>Symptomatic first PE</td>
<td>Warfarin or acenocoumarol</td>
<td>3 mo</td>
<td>Discont. /VKA</td>
<td>3 mo or 9 mo</td>
<td>Mean: 32.7 / 34.9 mo</td>
</tr>
<tr>
<td>Eischer 2009: AUREC-VFIII</td>
<td>First unprovoked DVT or PE</td>
<td>UH or LMWH, followed</td>
<td>6 mo</td>
<td>Discont. /VKA</td>
<td>2 yr</td>
<td>Mean: 37 mo (both)</td>
</tr>
<tr>
<td>Direct thrombin inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schulman 2013: RE-SONATE</td>
<td>Symptomatic DVT or PE</td>
<td>Approved anticoagulant or DOAC (DBG; from RECOVER or RECOVER II trials)</td>
<td>6-18</td>
<td>Placebo/DBG, 150 mg, BID</td>
<td>6 mo</td>
<td>12 mo after completion of treatment</td>
</tr>
<tr>
<td>Schulman 2013: REMEDY</td>
<td>Symptomatic DVT or PE</td>
<td>Approved anticoagulant or DOAC (DBG; from RECOVER or RECOVER II trials)</td>
<td>3-12</td>
<td>VKA/DBG, 150 mg, BID</td>
<td>36 mo</td>
<td>1 additional follow-up visit 30 days after end of treatment</td>
</tr>
<tr>
<td>Factor Xa Inhibitors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauersachs 2010: EINSTEIN-EXT</td>
<td>Symptomatic DVT</td>
<td>Acenocoumarol or warfarin (EINSTEIN trial or routine care) or RVX (EINSTEIN trials)</td>
<td>6–12 mo</td>
<td>Placebo/RVX, 20 mg, QD</td>
<td>6 or 12 mo</td>
<td>1 additional follow-up visit 30 days after end of treatment</td>
</tr>
<tr>
<td>Agnelli 2013: AMPLIFY-EXT</td>
<td>Symptomatic DVT or PE</td>
<td>Standard anticoagulant</td>
<td>6–12 mo</td>
<td>Placebo/APX, 2.5 mg, BID/APX, 5</td>
<td>12 mo</td>
<td>1 additional follow-up visit 30</td>
</tr>
<tr>
<td>Study</td>
<td>Population</td>
<td>Initial acute therapy</td>
<td>Extended therapy</td>
<td>End of study</td>
<td>Length of follow-up; comparator/intervention</td>
<td>No. randomized</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>-----------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Treatment</td>
<td>Duration</td>
<td>Treatment</td>
<td>Treatment duration</td>
<td>Comparator</td>
</tr>
<tr>
<td></td>
<td></td>
<td>therapy or APX, ENOX or warfarin (AMPLIFY trial)</td>
<td></td>
<td>mg, BID</td>
<td>days after end of treatment</td>
<td></td>
</tr>
<tr>
<td>Low-dose ASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Becattini 2012: WARFASA</td>
<td>Symptomatic unprovoked DVT or PE</td>
<td>UH or LMWH, followed by warfarin</td>
<td>6–18 mo</td>
<td>Placebo/ASA, 100 mg, QD</td>
<td>2 yr with option of extension</td>
<td>Appears to be equal to treatment duration</td>
</tr>
<tr>
<td>Brighton 2012: ASPIRE</td>
<td>Symptomatic unprovoked DVT or PE</td>
<td>Heparin followed by warfarin (or an effective alternative anticoagulant)</td>
<td>6 wk to 24 mo</td>
<td>Placebo/ASA, 100 mg, QD</td>
<td>2–4 yr</td>
<td>4 yr</td>
</tr>
</tbody>
</table>

Note: ASA = acetylsalicylic acid, APX = apixaban, BID = twice daily, DBG = dabigatran, EDX = edoxaban, ENOX = enoxaparin, DVT = deep vein thrombosis, LMWH = low-molecular-weight heparin, DOAC = new oral anticoagulant, PE = pulmonary embolism, QD = once daily, RVX = rivaroxaban, UH = unfractionated heparin, VKA = vitamin k antagonist, VTE = venous thromboembolism.

Table 17: Participant characteristics — EXTENDED treatment studies

<table>
<thead>
<tr>
<th>Study</th>
<th>Comparator/ intervention</th>
<th>% of participants*; comparator/intervention 1/intervention 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean age, yr, Men, DVT, PE, PE +/- DVT, Unprovoked VTE, Surgery, Immobilization, Cancer†, Known thrombophilia</td>
</tr>
<tr>
<td>Kearon 1999:</td>
<td>PLACEBO/VKA</td>
<td>58/59, 53/68, 73/76, 27/24, NR, Unprovoked only, Excluded, Excluded, Excluded, Excluded</td>
</tr>
<tr>
<td>LAFIT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agnelli 2001:</td>
<td>DISCT/VKA</td>
<td>68/67, 61/55, DVT only, NR, NR, Unprovoked only, Excluded, Excluded, Excluded, Excluded</td>
</tr>
<tr>
<td>WODIT-DVT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agnelli 2003:</td>
<td>DISCT/VKA</td>
<td>61/63, 42/39, NA (PE only), PE only, 55/55, 57/56, NR, NR, Excluded, Excluded</td>
</tr>
<tr>
<td>WODIT-PE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Comparator/ intervention</td>
<td>% of participants*; comparator/intervention 1/intervention 2</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Eischer 2009: AUREC-VFIII</td>
<td>DISCT/VKA</td>
<td>54/53</td>
</tr>
<tr>
<td>Schulman 2013: RE-SONATE</td>
<td>PLACEBO/DBG</td>
<td>56/56</td>
</tr>
<tr>
<td>Schulman 2013: RE-MEDY</td>
<td>WARB/DBG</td>
<td>54/55</td>
</tr>
<tr>
<td>Bauersachs 2010: EINSTEIN-EXT</td>
<td>PLACEBO/RVX</td>
<td>58/58</td>
</tr>
<tr>
<td>Agnelli 2013: AMPLIFY-EXT</td>
<td>PLACEBO/APX 2.5/5.0</td>
<td>57/57/56</td>
</tr>
<tr>
<td>Becattini 2012: WARFASA</td>
<td>PLACEBO/ASA</td>
<td>62/62</td>
</tr>
<tr>
<td>Brighton 2012: ASPIRE</td>
<td>PLACEBO/ASA</td>
<td>54/55</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, ASA = acetylsalicylic acid, DBG = dabigatran, DISCT = discontinuation, DVT = deep vein thrombosis, PE = pulmonary embolism, RVX = rivaroxaban, VTE = venous thromboembolism.

*Unless otherwise stated.
†Active or previous.
‡Reported as “recent surgery or trauma.”
Relative to placebo or discontinuation, VKA reduced the risk of recurrent VTE, DVT, total and non-fatal PE, and increased risk of major bleeds (Table 18). Dabigatran reduced the risk of recurrent VTE, DVT, and total and non-fatal PE. There was no significant difference between ASA or apixaban (2.5 or 5 mg bid) and placebo/discontinuation for any outcome reported. The risk of major bleed was increased with rivaroxaban relative to placebo/discontinuation; however, the confidence interval for the hazard ratio is wide (40.13; 95% CrI 4.20, 395.30).

Table 18: Treatment effects relative to placebo or discontinuation — EXTENDED treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Recurrent VTE</th>
<th>Recurrent DVT</th>
<th>Recurrent PE (total)</th>
<th>Recurrent PE (non-fatal)</th>
<th>Recurrent PE (fatal)</th>
<th>Major bleed</th>
<th>All-cause death</th>
<th>CV death</th>
<th>Stroke</th>
<th>ACS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.09 (0.03, 0.36)*</td>
<td>0.03 (0.00, 0.17)*</td>
<td>0.05 (0.00, 0.63)*</td>
<td>0.06 (0.00, 0.75)*</td>
<td>0.43 (0.09, 1.49)</td>
<td>4.49 (1.30, 31.25)*</td>
<td>0.23 (0.01, 2.79)</td>
<td>0.22 (0.01, 1.08)</td>
<td>—</td>
<td>5.70 (0.08, 272.10)</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.10 (0.02, 0.52)*</td>
<td>0.05 (0.00, 0.24)*</td>
<td>0.08 (0.00, 0.82)*</td>
<td>0.09 (0.01, 0.91)*</td>
<td>0.90 (0.30, 3.23)</td>
<td>2.91 (0.57, 19.13)</td>
<td>0.21 (0.01, 2.97)</td>
<td>—</td>
<td>0.21 (0.00, 11.62)</td>
<td>4.41 (0.84, 35.46)</td>
</tr>
<tr>
<td>ASA 100 mg qd</td>
<td>0.64 (0.17, 2.38)</td>
<td>—</td>
<td>0.74 (0.06, 9.13)</td>
<td>0.75 (0.06, 8.97)</td>
<td>0.44 (0.12, 3.72)</td>
<td>1.47 (0.19, 28.93)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.19 (0.03, 1.31)</td>
<td>0.28 (0.07, 1.07)</td>
<td>0.23 (0.02, 3.06)</td>
<td>0.12 (0.01, 1.86)</td>
<td>0.62 (0.04, 4.37)</td>
<td>40.13 (4.20, 395.30)*</td>
<td>1.73 (0.02, 200.60)</td>
<td>2.21 (0.04, 21.91)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.19 (0.03, 1.23)</td>
<td>—</td>
<td>0.52 (0.04, 6.38)</td>
<td>0.51 (0.04, 6.26)</td>
<td>9.08 (0.10, 132.90)</td>
<td>0.86 (0.34, 3.90)</td>
<td>2.02 (0.06, 118.50)</td>
<td>0.16 (0.05, 0.80)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.19 (0.03, 1.31)</td>
<td>—</td>
<td>0.26 (0.02, 3.25)</td>
<td>0.25 (0.02, 3.43)</td>
<td>1.07 (0.04, 13.02)</td>
<td>0.43 (0.09, 1.54)</td>
<td>1.12 (0.03, 66.89)</td>
<td>0.35 (0.10, 0.80)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: ACS = acute coronary syndrome, APX = apixaban, ASA = acetylsalicylic acid, CV = cardiovascular, DBG = dabigatran, DVT = deep vein thrombosis, RVX = rivaroxaban, VKA = vitamin K antagonist, VTE = venous thromboembolism. *Statistically significant (p < 0.05).

None of the included studies reported intracranial hemorrhage. Green cells indicate that the treatment is significantly better than placebo/discontinuation. Red indicates that the treatment is significantly worse than placebo/discontinuation.

4.2.1. RECURRENT VTE

The evidence network for recurrent VTE included 9 studies (6, 21, 27-32) and a total of 9590 participants. Overall, 7 different treatments were considered, providing for 11 comparisons based on 8 studies designed with 2 treatment arms and one study with three treatment arms (Figure 12).

Data for WODIT-PE was not included in the network because the treatment period was 3 or 9 months, but outcomes were reported as end of study only. The on-treatment period data for the ASPIRE study includes up to 7 days after discontinuation of the study drug; these data were included in the network.
Figure 12: Evidence network for recurrent VTEs — EXTENDED treatment

Compared with those taking placebo or who discontinued therapy, patients taking VKA or dabigatran had a lower risk of recurrent VTE (HR 0.09, 95% CI 0.03, 0.36; HR 0.10, 95% CI 0.02, 0.52, respectively; Table 19). Patients taking ASA had a higher risk of recurrent VTE compared to those taking VKA (HR 7.41, 95% CI 1.00, 41.48)

Table 19: Recurrent VTE: hazard ratios (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/Placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>ASA 100 mg qd</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA 0.09</td>
<td>0.03, 0.36*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.10</td>
<td>1.19</td>
<td>0.22, 4.80</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ASA 100 mg qd</td>
<td>0.64</td>
<td>7.41</td>
<td>1.00, 41.48*</td>
<td>6.26 (0.76, 48.86)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.19</td>
<td>2.17</td>
<td>0.14, 22.76</td>
<td>0.29</td>
<td>0.97</td>
<td>1.02</td>
<td>1.03</td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.19</td>
<td>2.17</td>
<td>0.15, 21.14</td>
<td>0.30</td>
<td>1.02</td>
<td>1.03</td>
<td>1.03</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.19</td>
<td>2.19</td>
<td>0.19, 19.43</td>
<td>1.87</td>
<td>0.30</td>
<td>1.02</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, ASA = acetylsalicylic acid, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin k antagonist.
*p < 0.05.
Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.
4.2.2. RECURRENT DVT

The evidence network for recurrent DVT included 4 studies (6, 27, 30) and a total of 5578 participants. Overall, 4 different treatments were considered, providing for 4 comparisons based on 4 studies designed with 2 treatment arms each.

Data from the WARFASA trial were not included in this analysis. WARFASA reported the number of DVT events, while the other 4 included trials reported the number of patients with a recurrent DVT (Figure 13).

Figure 13: Evidence network for recurrent DVT — EXTENDED treatment

Compared with those taking placebo or who discontinued therapy, patients taking VKA or dabigatran had a lower risk of recurrent DVT (HR 0.03, 95% CI 0.0, 0.17; HR 0.05, 95% CI 0.00, 0.24, respectively; Table 20). Patients taking rivaroxaban had a higher risk of recurrent DVT compared to those taking VKA (HR 9.58, 95% CI 1.001, 167.10).

Table 20: Recurrent DVT: hazard ratios (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/Placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.03 (0.00, 0.17)*</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.05 (0.00, 0.24)*</td>
<td>1.56 (0.46, 7.14)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.28 (0.07, 1.07)</td>
<td>9.58 (1.001, 167.10)*</td>
<td>5.87 (0.70, 79.77)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin k antagonist
*p < 0.05.
Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.
4.2.3. RECURRENT PE

The evidence network for recurrent PE (total) included 6 studies (6, 21, 27, 30, 31) and a total of 8467 participants. Overall, 7 different treatments were considered, providing for 8 comparisons based on 5 studies with 2 treatment arms and 1 study with 3 arms (Figure 14). RE-MEDY reported “deaths related to VTE”, which were judged to be due to fatal PE and were included for this outcome.

Figure 14: Evidence network for recurrent PE (fatal and non-fatal) — EXTENDED treatment

Compared with discontinuation or placebo, the risk of recurrent PE was lower among patients taking VKA (HR 0.05, 95% CI 0.00, 0.63) or dabigatran (HR 0.08, 95% CI 0.00, 0.82; Table 21).

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/Placebo</th>
<th>VKA 0.05 (0.00, 0.63)*</th>
<th>DBG 150 mg bid</th>
<th>ASA 100 mg qd</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.08 (0.00, 0.82)*</td>
<td>1.49 (0.15, 12.37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASA 100 mg qd</td>
<td>0.74 (0.06, 9.13)</td>
<td>14.48 (0.45, 541.90)</td>
<td>9.44 (0.34, 405.50)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.23 (0.02, 3.06)</td>
<td>4.58 (0.12, 185.90)</td>
<td>2.99 (0.09, 133.60)</td>
<td>0.31 (0.01, 10.79)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.52 (0.04, 6.38)</td>
<td>10.07 (0.29, 379.70)</td>
<td>6.56 (0.24, 276.00)</td>
<td>0.70 (0.02, 23.63)</td>
<td>2.19 (0.06, 81.18)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.2.4. NON-FATAL RECURRENT PE

The evidence network for recurrent nonfatal PE included 6 studies (6, 21, 27, 30, 31) and a total of 8467 participants. Overall, 7 different treatments were considered, providing for 8 comparisons based on 5 studies with 2 treatment arms and 1 study with 3 arms (Figure 15).

The risk of non-fatal recurrent PE was lower among patients taking VKA (HR 0.06, 95% CI 0.00, 0.75) or dabigatran (HR 0.09, 95% CI 0.01, 0.91) compared to discontinuation or placebo (Table 22). There were no significant differences among the DOACs.
Table 22: Non-fatal recurrent PE: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — EXTENDED

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/Placebo</th>
<th>VKA 0.06 (0.00, 0.75)*</th>
<th>DBG 150 mg bid</th>
<th>ASA 100 mg qd</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td></td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td></td>
<td>—</td>
<td>1.49 (0.14, 13.39)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASA 100 mg qd</td>
<td>0.75 (0.06, 8.97)</td>
<td>13.11 (0.34, 520.30)</td>
<td>8.77 (0.29, 343.90)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.12 (0.01, 1.86)</td>
<td>2.16 (0.04, 98.82)</td>
<td>1.41 (0.03, 68.47)</td>
<td>0.16 (0.00, 6.80)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.51 (0.04, 6.26)</td>
<td>8.86 (0.25, 356.40)</td>
<td>6.01 (0.19, 244.50)</td>
<td>0.68 (0.02, 22.26)</td>
<td>4.22 (0.10, 203.30)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.25 (0.02, 3.43)</td>
<td>4.40 (0.11, 195.80)</td>
<td>2.89 (0.08, 131.50)</td>
<td>0.32 (0.01, 12.35)</td>
<td>2.00 (0.04, 102.10)</td>
<td>0.49 (0.03, 7.23)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, ASA = acetylsalicylic acid, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin K antagonist. *p < 0.05.
Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.

4.2.5. FATAL RECURRENT PE

The evidence network for fatal recurrent PE included 6 studies (6, 21, 27, 30, 31) and a total of 8467 participants. Overall, 7 different treatments were considered, providing for 8 comparisons based on 5 studies designed with 2 treatment arms and one study with 3 arms (Figure 16).

Figure 16: Evidence network for fatal recurrent PE — EXTENDED treatment
There were no significant differences among the DOACs or between any of the DOACs and discontinuation/placebo (Table 23).

Table 23: Fatal recurrent PE: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/Placebo</th>
<th>VKA</th>
<th>ASA 100 mg qd</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.43 (0.09, 1.49)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASA 100 mg qd</td>
<td>0.44 (0.12, 3.72)</td>
<td>1.79 (0.18, 6.29)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.90 (0.30, 3.23)</td>
<td>2.34 (0.63, 9.51)</td>
<td>1.95 (0.22, 7.63)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.26 (0.01, 2.21)</td>
<td>0.62 (0.04, 4.37)</td>
<td>0.27 (0.02, 14.60)</td>
<td>0.22 (0.01, 3.64)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>2.92 (0.04, 16.15)</td>
<td>9.08 (0.10, 132.90)</td>
<td>5.14 (0.03, 89.46)</td>
<td>2.63 (0.05, 31.36)</td>
<td>6.76 (0.10, 422.60)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.32 (0.05, 2.36)</td>
<td>1.07 (0.04, 13.02)</td>
<td>0.66 (0.02, 12.34)</td>
<td>0.45 (0.02, 3.04)</td>
<td>1.15 (0.08, 36.79)</td>
<td>0.14 (0.02, 2.60)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, ASA = acetylsalicylic acid, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin k antagonist.

4.2.6. MAJOR BLEEDS

The evidence network for major bleeds included 8 studies (6, 21, 27-31) and a total of 8768 participants. Overall, 7 different treatments were considered, providing for 10 comparisons based on 7 studies designed with 2 treatment arms and one study with 3 arms (Figure 17).
Compared to placebo or discontinuation, patients taking VKA (HR 4.49, 95% CI 1.30, 31.25) or rivaroxaban (HR 40.13, 95% CI 4.20, 395.30) had a higher risk of major bleed (Table 24, Figure 17). Patients taking rivaroxaban had a higher risk of major bleed compared to those taking VKA (HR 7.04, 95% CI 1.34, 79.20), dabigatran (HR 12.59, 95% CI 2.96, 92.49), or ASA (HR 23.76, 95% CI 1.30, 706.10). The risk of major bleeding was lower among patients taking apixaban 2.5 mg compared with VKA (HR 0.23, 95% CI 0.01, 0.87) or rivaroxaban (0.02, 95% CI 0.00, 0.22), and lower among patients taking apixaban 5 mg compared with VKA (HR 0.10, 95% CI 0.00, 0.41), dabigatran (HR 0.19, 95% CI 0.01, 0.87) and rivaroxaban (HR 0.01, 95% CI 0.00, 0.13).

Table 24: Major bleeds: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/ Placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>ASA 100 mg qd</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>4.49 (1.30, 31.25)*</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.91 (0.57, 19.13)</td>
<td>0.58 (0.19, 1.19)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASA 100 mg qd</td>
<td>1.47 (0.19, 28.93)</td>
<td>0.19 (0.04, 9.63)</td>
<td>0.32 (0.07, 11.81)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>40.13 (4.20, 395.30)*</td>
<td>7.04 (1.34, 79.20)*</td>
<td>12.59 (2.96, 92.49)*</td>
<td>23.76 (1.30, 706.10)*</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.86 (0.34, 3.90)</td>
<td>0.23 (0.01, 0.87)*</td>
<td>0.39 (0.02, 1.75)</td>
<td>0.52 (0.02, 10.87)</td>
<td>0.02 (0.00, 0.22)*</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.43 (0.09, 1.54)</td>
<td>0.10 (0.00, 0.41)*</td>
<td>0.19 (0.01, 0.87)*</td>
<td>0.18 (0.01, 4.69)</td>
<td>0.01 (0.00, 0.13)*</td>
<td>0.45 (0.13, 2.64)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, ASA = acetylsalicylic acid, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin k antagonist. Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.
As can be seen in Table 24, the credible intervals for comparisons involving rivaroxaban are very wide. Rivaroxaban was used as a treatment in only one study (EINSTEIN-EXT), with zero major bleeds in the placebo/discontinuation arm and four in the rivaroxaban arm.

An additional analysis was performed in which we removed all studies that reported zero events in either study arm. Zero events were reported in the placebo/discontinuation arms of the LAFIT (v. VKA), AURC-VFIII (v. VKA), and RE-SONATE (v. dabigatran) trials; however additional data for these comparisons was obtained from studies reporting no zero counts, thus allowing these drugs to remain in the network. Because the EINSTEIN-EXT trial was the only trial involving rivaroxaban, the removal of this trial from the analysis meant that this arm was lost from the network. This alternative analysis is presented in Table 25.

Table 25: Major bleeds: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — EXTENDED, zero count trials removed from network

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/Placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>ASA 100 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>4.73 (1.63, 27.23)*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>2.22 (0.67, 14.45)</td>
<td>0.46 (0.23, 0.98)*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ASA 100 mg qd</td>
<td>0.61 (0.06, 6.89)</td>
<td>0.12 (0.01, 2.67)</td>
<td>0.26 (0.01, 7.43)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.63 (0.19, 1.91)</td>
<td>0.13 (0.02, 0.36)*</td>
<td>0.29 (0.05, 0.83)*</td>
<td>1.20 (0.08, 8.78)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.33 (0.03, 1.01)</td>
<td>0.05 (0.01, 0.46)*</td>
<td>0.10 (0.02, 1.15)</td>
<td>0.59 (0.01, 4.65)</td>
<td>0.41 (0.07, 3.34)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, ASA = acetylsalicylic acid, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin k antagonist.
*p < 0.05.
Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.

4.2.7. INTRACRANIAL BLEEDS

No studies reported intracranial bleeds during the treatment period.

4.2.8. ALL-CAUSE DEATH

The evidence network for all-cause death included 5 studies (6, 21, 27, 30) and a total of 8064 participants. Overall, 6 different treatments were considered, providing for 7 comparisons based on 4 studies designed with 2 treatment arms and one study with 3 arms (Figure 18).
Figure 188: Evidence network for all-cause death — EXTENDED treatment

There were no significant differences between the DOACs or between DOACs and placebo/discontinuation for all-cause death (Table 26).

Table 26: All-cause death: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/ Placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.23 (0.01, 2.79)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.21 (0.01, 2.97)</td>
<td>0.88 (0.10, 7.85)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.43 (0.01, 12.34)</td>
<td>1.73 (0.02, 200.60)</td>
<td>1.97 (0.02, 249.60)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.46 (0.04, 5.87)</td>
<td>2.02 (0.06, 118.50)</td>
<td>2.22 (0.06, 151.70)</td>
<td>1.12 (0.02, 133.20)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.26 (0.02, 3.54)</td>
<td>1.12 (0.03, 66.89)</td>
<td>1.25 (0.03, 84.84)</td>
<td>0.64 (0.01, 80.10)</td>
<td>0.56 (0.04, 7.23)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, ASA = acetylsalicylic acid, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin K antagonist.
4.2.9. CARDIOVASCULAR DEATH

The evidence network for all-cause death included 3 studies (6, 21, 27) and a total of 3845 participants. Overall, 5 different treatments were considered, providing for 5 comparisons based on 2 studies designed with 2 treatment arms and one study with 3 arms (Figure 19).

Figure 19: Evidence network for CV death — EXTENDED treatment

The risk of CV death was lower among patients taking apixaban at 2.5 mg (HR 0.16, 95% CI 0.05, 0.80) or 5 mg (HR 0.35, 95% CI 0.10, 0.80) compared to patients taking placebo or who discontinued treatment (Table 27).
Table 27: CV death: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/Placebo</th>
<th>VKA</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.22 (0.01, 1.08)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>2.21 (0.04, 21.91)</td>
<td>12.96 (0.16, 526.80)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.16 (0.05, 0.80)*</td>
<td>0.95 (0.07, 32.57)</td>
<td>0.10 (0.00, 2.56)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.35 (0.10, 0.80)*</td>
<td>1.38 (0.27, 75.44)</td>
<td>0.19 (0.02, 5.13)</td>
<td>1.87 (0.38, 8.00)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = axipaban, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin K antagonist.
*p < 0.05.
Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.

4.2.10. STROKE

The evidence network for recurrent DVT included 1 study (RESONATE; (30)) and a total of 1353 participants. Overall, 2 different treatments were considered, providing for 2 comparisons based on 1 study with 2 treatment arms, comparing discontinuation/placebo with dabigatran 150 mg bid.

There was no significant difference in the risk of stroke among patients taking dabigatran or those taking placebo or who had discontinued treatment (HR 0.21, 95% Crl 0.00, 11.62).

4.2.11. ACUTE CORONARY SYNDROME

The evidence network for acute coronary syndrome included 2 studies (30) and a total of 4219 participants. Overall, 3 treatments were considered, providing for 2 comparisons based on 2 studies with 2 treatment arms each (Figure 20).

Figure 19: Evidence network acute coronary syndrome — EXTENDED treatment

There was no statistically significant difference between the treatments for the risk of acute coronary syndrome (Table 28).
Table 28: Acute coronary syndrome: Hazard ratios (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>Discontinuation/Placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>5.70 (0.08, 272.10)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>4.41 (0.84, 35.46)</td>
<td>0.81 (0.02, 46.74)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: DBG = dabigatran, VKA = vitamin k antagonist.

5. SUBGROUPS

The subgroups specified a priori were age, weight, renal function, time in therapeutic range, qualifying event (DVT or PE), and comorbidities (diabetes, cardiovascular disease using antiplatelet therapy). Among the ACUTE studies, recurrent VTE was reported for each subgroup (excluding time in therapeutic range), and major bleeding was reported among patients with initial PE or DVT. No other outcomes were reported by subgroup.

Among the EXTENDED studies, recurrent VTE was reported for each subgroup (excluding time in therapeutic range). No other outcomes were reported by subgroup.

No studies were identified that reported outcomes for patients with diabetes or those with cardiovascular disease using antiplatelet therapy.

5.1. ACUTE TREATMENT

5.1.1. AGE

Recurrent VTE was reported by age group for 4 studies (6, 24-26). The cut-off point of 75 years was chosen based on the data reported in the primary studies. The network geometry is shown in Figure 21.

Figure 20: Evidence network recurrent VTE — ACUTE treatment, age subgroups
Overall, there were no differences in outcomes between patients aged more or less than 75 years; all resulting hazard ratios were not statistically significant in both age groups (Table 29, Table 30).

< 75 YEARS

The network for recurrent VTE among patients aged 75 years or younger included 18,629 patients. Each of the 4 included studies included 2 arms, resulting in 4 comparisons of 4 treatments (Figure 22).

Table 29: Recurrent VTEs among patients aged 75 years or younger: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVX 20 mg qd</td>
<td>0.98 (0.22, 4.44)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.99 (0.12, 7.92)</td>
<td>1.00 (0.07, 12.99)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.92 (0.11, 7.76)</td>
<td>0.94 (0.07, 12.45)</td>
<td>0.95 (0.05, 18.56)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, EDX = edoxaban, DBG = dabigatran, RVX = rivaroxaban, VKA = vitamin K antagonist.

> 75 YEARS

The network for recurrent VTE among patients aged 75 years or older included 3136 patients. Each of the 4 included studies included 2 arms, resulting in 4 comparisons of 4 treatments (Figure 22).

Table 30: Recurrent VTEs among patients aged 75 years or older: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVX 20 mg qd</td>
<td>0.60 (0.11, 2.86)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.50 (0.05, 4.66)</td>
<td>0.84 (0.06, 13.65)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.47 (0.05, 5.03)</td>
<td>0.81 (0.05, 15.56)</td>
<td>0.94 (0.04, 25.32)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, EDX = edoxaban, RVX = rivaroxaban.
5.1.2. WEIGHT

Recurrent VTE was reported by weight for 4 studies (6, 24-26). The cut-off point of 60 kg years was based on the data reported in the primary studies (Figure 23). Some simplifications were made when combining data. The Einstein DVT (6) and Einstein PE (26) studies both reported data as > 70 kg and < 70 kg — these were included with the > 60 kg and < 60 kg groups respectively.

Figure 21: Evidence network recurrent VTE: — ACUTE treatment, weight subgroups

Overall, there were no differences in outcomes between patients aged who weighted less than or more than 60 kg; all resulting hazard ratios were not statistically significant in both weight groups (Table 31, Table 32).

< 60 KG

The network for recurrent VTE among patients under 60 kg included 3,792 patients. Each of the 4 included studies included 2 arms, resulting in 4 comparisons of 4 treatments (Figure 22).

Table 31: Recurrent VTEs among patients < 60 kg: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVX 20 mg qd</td>
<td>0.96 (0.17, 5.57)</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.79 (0.07, 8.99)</td>
<td>0.83 (0.04, 16.44)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.61 (0.05, 7.13)</td>
<td>0.64 (0.03, 12.53)</td>
<td>0.77 (0.02, 23.60)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, EDX = edoxaban, RVX = rivaroxaban.
The network for recurrent VTE among patients under 60 kg included 17,955 patients. Each of the 4 included studies included 2 arms, resulting in 4 comparisons of 4 treatments (Figure 22).

Table 32: Recurrent VTEs among patients > 60 kg: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>RVX 20 mg qd</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVX 20 mg qd</td>
<td>0.87 (0.21, 3.62)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.90 (0.12, 6.33)</td>
<td>1.04 (0.09, 11.75)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.87 (0.12, 6.60)</td>
<td>0.99 (0.08, 12.30)</td>
<td>0.97 (0.06, 16.07)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, EDX = edoxaban, RVX = rivaroxaban.

5.1.3. RENAL FUNCTION

Recurrent VTE was reported by renal function in 3 studies (6, 25, 26). The cut-off point of 80 ml/min is based on normal kidney function and is consistent with data reported in the primary studies. One study was excluded from this analysis because all patients had creatinine clearance less than 80 ml/min (24); the subgroups reported in this study were 30–50 ml/min and > 50 ml/min.

Figure 22: Evidence network recurrent VTE — ACUTE treatment, renal function subgroups

Overall, there were no differences in outcomes between patients with normal or abnormal renal clearance; all resulting hazard ratios were not statistically significant in both renal function groups (Table 33, Table 34).

CREATININE CLEARANCE < 80 ML/MIN

The network for recurrent VTE among patients with creatinine clearance less than 80 ml/min included 4640 patients. Each of the 3 included studies included 2 arms, resulting in 3 comparisons of 3 treatments (Figure 23).
Table 33: Recurrent VTEs among patients with creatinine clearance < 80 ml/min: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>RVX 20 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVX 20 mg qd</td>
<td>0.83 (0.19, 3.60)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>1.09 (0.14, 8.68)</td>
<td>1.30 (0.11, 16.46)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, RVX = rivaroxaban.

5.1.4. QUALITY OF INR CONTROL (TIME IN THERAPEUTIC RANGE)

One study, HOKUSAI (24), reported recurrent VTE among patients with centre-level INR percent time in therapeutic range (< 60% v. ≥ 60%). Among patients in the < 60% group, recurrent VTEs were reported for 45 of 1271 patients (3.5%) receiving warfarin and 38 of 1199 patients (3.2%) receiving edoxaban. Among patients in the ≥ 60% group, VTEs recurred in 101 of 2845 patients (3.6%) receiving warfarin and 89 of 2876 patients (3.1%) receiving edoxaban.

One abstract reporting on the EINSTEIN-DVT trial (33) reported the incidence of recurrent VTE in the rivaroxaban and VKA groups in relation to adjusted time in therapeutic range per center. The authors defined “adjusted time in therapeutic range per center” as excluding INRs where VKA therapy was intentionally interrupted (including the period of 8 days after restart), where heparins or fondaparinux were used, after a primary efficacy outcome or major bleeding.

The adjusted TTR (INR 2.0–3.0) was 55.4% in the 3-month group, 60.1% in the 6-month group, and 62.8% in the 12-month groups. The hazard ratio for recurrent VTE in centers with mean 'adjusted' TTR < 55.9% was 0.78 (95% CI 0.38, 1.63); the hazard ratio in centers with mean adjusted TTR between 55.9% and 65.3% was 0.68 (95% CI 0.29, 1.59) and was 0.68 (95% CI 0.35, 1.35) in centers with mean adjusted TTR greater than 65.3%.

The data were not sufficiently similar for pooling.
5.1.5. COMORBIDITIES

No studies were identified that reported recurrent VTEs or other outcomes among patients with diabetes or cardiovascular disease taking antiplatelet therapy.

5.1.6. INITIAL DVT

RECURRENT VTE

Recurrent VTE was reported among patients with DVT as the qualifying event in 4 studies (6, 22, 24, 25). The Einstein DVT study enrolled patients only with DVT, while the other studies report events among patients with initial DVT as a subgroup.

The network for recurrent VTE among patients with initial DVT included 13,557 patients. Each of the 4 included studies included 2 arms, resulting in 4 comparisons of 5 treatments (Figure 24).

Figure 23: Evidence network recurrent VTE — ACUTE treatment, initial DVT subgroup

There were no significant differences in the risk of recurrent VTE among the DOACs in the head-to-head comparisons or compared to standard therapy among patients with initial DVT (Table 35).

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>RVX 20 mg qd</th>
<th>DBG 150 mg bid</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVX 20 mg qd</td>
<td>0.81 (0.06, 10.50)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 35: Recurrent VTEs among patients with initial DVT: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment
MAJOR BLEEDS

Major bleeds were reported among patients with DVT as the qualifying event in 2 studies (6, 25). Einstein DVT enrolled patients only with DVT, while AMPLIFY reported events among patients with initial DVT as a subgroup.

The network for major bleeds among patients with initial DVT included 6960 patients. Both of the included studies had 2 arms, resulting in 2 comparisons of 3 treatments (Figure 25).

Figure 24: Evidence network for major bleeds — ACUTE treatment, initial DVT subgroup

There were no significant differences in the risk of major bleeds among the DOACs in the head-to-head comparisons or compared to standard therapy among patients with initial DVT (Table 36).

Table 36: Major bleeds among patients with initial DVT: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>RVX 20 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVX 20 mg qd</td>
<td>0.62 (0.05, 7.92)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.46 (0.03, 6.12)</td>
<td>0.75 (0.02, 29.93)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, RVX = rivaroxaban.
5.1.7. INITIAL PE

Recurrent VTE was reported among patients with PE as the qualifying event in 4 studies (22, 24-26). EINSTEIN-PE enrolled patients only with PE, while the other studies report events among patients with initial PE as a subgroup.

The network for recurrent VTE among patients with initial PE included 10,724 patients. Each of the 4 included studies included 2 arms, resulting in 4 comparisons of 5 treatments (Figure 26).

Figure 25: Evidence network recurrent VTE — ACUTE treatment, initial PE subgroup

There were no significant differences in the risk of recurrent VTEs among the DOACs in the head-to-head comparisons or compared to standard therapy among patients with initial PE (Table 37).

Table 37: Recurrent VTEs among patients with initial PE: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>RVX 20 mg qd</th>
<th>DBG 150 mg bid</th>
<th>EDX 60 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVX 20 mg qd</td>
<td>1.19 (0.09, 15.75)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.85 (0.06, 11.30)</td>
<td>0.71 (0.02, 28.19)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>EDX 60 mg qd</td>
<td>0.72 (0.06, 9.06)</td>
<td>0.61 (0.02, 21.78)</td>
<td>0.84 (0.02, 32.15)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.91 (0.07, 11.73)</td>
<td>0.76 (0.02, 29.48)</td>
<td>1.08 (0.03, 44.41)</td>
<td>1.26 (0.03, 48.44)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, EDX = edoxaban, RVX = rivaroxaban.
MAJOR BLEEDS

Major bleeds were reported among patients with PE as the qualifying event in 2 studies (25, 26). EINSTEIN PE enrolled patients only with PE, while AMPLIFY reported events among patients with initial PE as a subgroup.

The network for major bleeds among patients with initial DVT included 6960 patients. Both of the included studies had 2 arms, resulting in 2 comparisons of 3 treatments (Figure 27).

Figure 26: Evidence network for major bleeds — ACUTE treatment, initial PE subgroup

There were no significant differences in the risk of major bleeds among the DOACs in the head-to-head comparisons or compared to standard therapy among patients with initial PE (Table 38).

Table 38: Major bleeds among patients with initial DVT: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — ACUTE treatment

<table>
<thead>
<tr>
<th></th>
<th>Standard therapy</th>
<th>RVX 20 mg qd</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVX 20 mg qd</td>
<td>0.52 (0.04, 6.41)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.14 (0.01, 2.05)</td>
<td>0.28 (0.01, 11.36)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, RVX = rivaroxaban.

5.2. EXTENDED TREATMENT

5.2.1. AGE

Recurrent VTE was reported by age group for 4 studies (6, 21, 30). The cut-off point of 75 years was based on the data reported in the primary studies. RE-SONATE (30) reported patients aged less than or greater than 65 years; these were grouped with those aged less than or greater than 75 years respectively. There were differences in the risk of recurrent VTE between patients aged more or less than 75 years; these are outlined below (Table 39, Table 40; Figure 28).
< 75 YEARS

The network for recurrent VTE among patients aged 75 years or younger included 6649 patients. Three of the included studies had 2 treatment arms and one study had 3 arms, resulting in 6 comparisons of 6 treatments (Figure 28).

There were no significant differences among the treatments in the head-to-head comparisons or compared to placebo/discontinuation among patients aged less than 75 years (Table 39).

Table 39: Recurrent VTEs among patients aged 75 years or younger: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.06 (0.00, 2.74)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.09 (0.00, 1.51)</td>
<td>1.48 (0.11, 19.37)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.21 (0.01, 2.95)</td>
<td>3.49 (0.03, 387.40)</td>
<td>2.34 (0.05, 120.00)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.16 (0.01, 2.04)</td>
<td>2.55 (0.02, 280.80)</td>
<td>1.72 (0.04, 92.99)</td>
<td>0.74 (0.02, 28.71)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.21 (0.02, 2.72)</td>
<td>3.50 (0.04, 417.80)</td>
<td>2.37 (0.05, 131.90)</td>
<td>1.02 (0.03, 40.72)</td>
<td>1.36 (0.10, 20.14)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin K antagonist.
The network for recurrent VTE among patients aged 75 years or older included 3136 patients. Each of the 4 included studies included 2 arms, resulting in 4 comparisons of 4 treatments (Figure 28).

Compared with placebo or discontinuation, the risk of recurrent VTE was lower among patients taking dabigatran (HR 0.08, 95% CI 0.02, 0.22), rivaroxaban (HR 0.09, 95% CI 0.02, 0.77), apixaban 2.5 mg (HR 0.34, 95% CI 0.13, 0.97), and apixaban 5 mg (HR 0.10, 95% CI 0.02, 0.26) (Table 40). There were no significant differences among the treatments in the head-to-head comparisons.

Table 40: Recurrent VTEs among patients aged 75 years or older — Hazard ratio (95% CI) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.04 (0.00, 1.09)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.08 (0.02, 0.22)*</td>
<td>1.35 (0.07, 31.23)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.09 (0.02, 0.77)*</td>
<td>3.38 (0.03, 112.20)</td>
<td>1.45 (0.16, 15.37)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.34 (0.13, 0.97)*</td>
<td>9.22 (0.20, 278.60)</td>
<td>4.88 (0.87, 32.14)</td>
<td>3.65 (0.26, 29.25)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.10 (0.02, 0.26)*</td>
<td>2.01 (0.15, 153.30)</td>
<td>1.29 (0.16, 7.67)</td>
<td>1.07 (0.05, 7.60)</td>
<td>0.27 (0.05, 1.08)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin K antagonist.

*p < 0.05.

Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.

5.2.2. WEIGHT

Recurrent VTE was reported by weight for 4 studies (6, 21, 30). The cut-off point of 60 kg years was based on the data reported in the primary studies. Some simplifications were made when combining data. The EINSTEIN DVT (6) study reported weight subgroup data as > 70 kg and < 70 kg, which were included with the > 60 kg and < 60 kg groups, respectively. The RE-SONATE and RE-MEDY studies (30) reported weight subgroups as < 50 kg and > 50 kg; these were grouped with the > 60 kg and < 60 kg groups, respectively.
The network for recurrent VTE among patients under 60 kg included 490 patients. Three of the included studies had two arms, and one study had three arms, resulting in 6 comparisons of 6 treatments (Figure 29).

Compared to discontinuation or placebo, the risk of recurrent VTE was significantly lower among patients taking rivaroxaban (HR 0.34, 95% CI 0.14, 0.95), apixaban 2.5 mg (HR 0.08, 95% CI 0.02, 0.36), or apixaban 5 mg (HR 0.36, 95% CI 0.16, 0.86) (Table 41). There were no significant differences in the head-to-head comparisons of the treatments.

Table 41: Recurrent VTEs among patients < 60 kg: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.34 (0.00, 28.61)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.90 (0.04, 4.37)</td>
<td>0.95 (0.04, 606.40)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.34 (0.14, 0.95)*</td>
<td>1.44 (0.01, 263.80)</td>
<td>0.40 (0.07, 7.11)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.08 (0.02, 0.36)*</td>
<td>0.21 (0.00, 27.22)</td>
<td>0.07 (0.01, 8.60)</td>
<td>0.24 (0.03, 1.32)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.36 (0.16, 0.86)*</td>
<td>0.98 (0.02, 163.10)</td>
<td>0.40 (0.08, 18.71)</td>
<td>1.02 (0.26, 4.22)</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin K antagonist. Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.
The network for recurrent VTE among patients under 60 kg included 7344 patients. Three of the included studies had two arms, and one study had three arms, resulting in 6 comparisons of 6 treatments.

The risk of recurrent VTE was significantly lower among patients taking VKA, dabigatran, rivaroxaban and apixaban compared to discontinuation or placebo (Table 42). The risk of recurrent VTE was significantly higher among patients taking apixaban at 2.5 mg or 5 mg bid than among those taking VKA (Figure 29).

Table 42: Recurrent VTEs among patients > 60 kg: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.04</td>
<td>—</td>
<td>1.51 (0.81, 2.70)</td>
<td>3.53 (0.63, 17.45)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.06</td>
<td>1.51</td>
<td>5.39 (0.89, 27.61)</td>
<td>3.63 (0.91, 10.13)</td>
<td>0.97 (0.30, 4.04)</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.22</td>
<td>1.51</td>
<td>3.53 (0.63, 17.45)</td>
<td>3.63 (0.91, 10.13)</td>
<td>0.97 (0.30, 4.04)</td>
<td>—</td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.20</td>
<td>5.19</td>
<td>3.63 (0.91, 10.13)</td>
<td>0.75 (0.31, 3.56)</td>
<td>0.87 (0.40, 1.82)</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.17</td>
<td>4.25</td>
<td>2.97 (0.94, 8.52)</td>
<td>0.75 (0.31, 3.56)</td>
<td>0.87 (0.40, 1.82)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin K antagonist. *p < 0.05.
Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.

5.2.3. RENAL FUNCTION

Recurrent VTE was reported by renal function in 4 studies (6, 21, 30). The cut-off point of 80 ml/min (creatinine clearance) was chosen based on normal kidney function and is consistent with data reported in the primary studies.
CREATININE CLEARANCE < 80 ML/MIN

The network for recurrent VTE among patients with creatinine clearance less than 80 ml/min included 2146 patients (Figure 30). Three of the included studies had two arms, and one study had three arms, resulting in 6 comparisons of 6 treatments.

There were no significant differences between any of the treatments and discontinuation or placebo, or between any of the treatments in head-to-head comparisons (Table 43).

Table 43: Recurrent VTEs among patients with creatinine clearance < 80 ml/min: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.95 (0.24, 2.59)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.68 (0.38, 1.77)</td>
<td>0.77 (0.54, 1.85)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.48 (0.19, 3.18)</td>
<td>0.83 (0.33, 1.29)</td>
<td>0.77 (0.46, 2.16)</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.48 (0.31, 4.03)</td>
<td>1.26 (0.32, 1.81)</td>
<td>0.86 (0.52, 2.85)</td>
<td>1.42 (0.64, 1.99)</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.39 (0.25, 2.31)</td>
<td>0.90 (0.21, 1.22)</td>
<td>0.75 (0.34, 1.94)</td>
<td>0.96 (0.51, 1.60)</td>
<td>0.73 (0.52, 1.19)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin K antagonist.
The network for recurrent VTE among patients with creatinine clearance above 80 ml/min included 5522 patients. Three of the included studies had two arms, and one study had three arms, resulting in 6 comparisons of 6 treatments (Figure 30).

The risk of recurrent VTE was lower among patients taking dabigatran than among those taking placebo or who discontinued treatment (HR 0.40, 95% Crl 0.20, 0.88) (Table 44). In head-to-head comparisons, the risk of recurrent VTE was greater among patients taking rivaroxaban than among those taking VKA (HR 7.79, 95% CI 4.89, 18.07) or dabigatran (HR 8.13, 95% CI 4.89, 19.61). The risk of recurrence was lower among those taking apixaban at 2.5 mg (HR 0.11, 95% CI 0.05, 0.24) or 5 mg (HR 0.09, 95% CI 0.05, 0.16) than among those taking rivaroxaban (Figure 33).

Table 44: Recurrent VTEs among patients with creatinine clearance > 80 ml/min: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/ placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.45 (0.21, 1.01)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.40 (0.20, 0.88)*</td>
<td>0.92 (0.78, 1.10)</td>
<td>—</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>2.81 (1.70, 9.61)*</td>
<td>7.79 (4.48, 18.07)*</td>
<td>8.13 (4.89, 19.61)*</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.28 (0.16, 2.13)</td>
<td>0.92 (0.31, 2.39)</td>
<td>0.94 (0.32, 2.52)</td>
<td>0.11 (0.05, 0.24)*</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.31 (0.12, 1.39)</td>
<td>0.74 (0.39, 1.49)</td>
<td>0.80 (0.43, 1.61)</td>
<td>0.09 (0.05, 0.16)*</td>
<td>0.67 (0.44, 2.02)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin K antagonist.
*p < 0.05.
Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.

5.2.4. COMORBIDITIES

No studies were identified that reported recurrent VTEs or other outcomes among patients with diabetes or cardiovascular disease taking antiplatelet therapy.

5.2.5. QUALITY OF INR CONTROL/TIME IN THERAPEUTIC RANGE

No studies were identified that reported outcome data by the quality of INR control or time in therapeutic range.
5.2.6. INITIAL DVT

RECURRENT VTE

Recurrent VTE was reported among patients with DVT as the qualifying event in 6 studies (6, 21, 28, 30, 31). EINSTEIN (6) and WODIT-DVT (28) enrolled patients only with DVT, while the other studies report events among patients with initial DVT as a subgroup.

The network for recurrent VTE among patients with initial DVT included 6100 patients. Six studies were included: 5 with 2 arms and 1 with 3 arms, resulting in 8 comparisons of 7 treatments (Figure 31).

Figure 29: Evidence network recurrent VTE — EXTENDED treatment, initial DVT subgroup

VKA and dabigatran reduced the risk of recurrent VTE relative to discontinuation/placebo (HR 0.08, 95% CI 0.01, 0.63; HR 0.10, 95% CI 0.01, 0.70, respectively) (Table 45). There were no significant differences in the risk of recurrent VTE among the DOACs in the head-to-head comparisons among patients with initial DVT.
Table 45: Recurrent VTEs among patients with initial DVT: Hazard ratio (95% Crl) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/placebo</th>
<th>VKA</th>
<th>DBG 150 mg bid</th>
<th>ASA 100 mg qd</th>
<th>RVX 20 mg qd</th>
<th>APX 2.5 mg bid</th>
<th>APX 5 mg bid</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td>0.08 (0.01, 0.63)*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td>0.10 (0.01, 0.70)*</td>
<td>1.15 (0.18, 9.25)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>ASA 100 mg qd</td>
<td>0.67 (0.07, 6.43)</td>
<td>7.82 (0.37, 219.80)</td>
<td>6.72 (0.32, 150.20)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>RVX 20 mg qd</td>
<td>0.18 (0.02, 1.83)</td>
<td>2.17 (0.11, 58.64)</td>
<td>1.83 (0.09, 41.10)</td>
<td>0.27 (0.01, 7.28)</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td>0.11 (0.01, 1.10)</td>
<td>1.29 (0.06, 34.08)</td>
<td>1.10 (0.05, 24.33)</td>
<td>0.16 (0.01, 4.07)</td>
<td>0.59 (0.02, 16.03)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td>0.19 (0.02, 1.84)</td>
<td>2.25 (0.12, 58.80)</td>
<td>1.92 (0.09, 42.84)</td>
<td>0.28 (0.01, 7.33)</td>
<td>1.05 (0.04, 26.51)</td>
<td>1.78 (0.16, 20.06)</td>
<td>—</td>
</tr>
</tbody>
</table>

Note: APX = apixaban, ASA = acetylsalicylic acid, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin K antagonist. *p < 0.05.
Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.

5.2.7. INITIAL PE

Recurrent VTE was reported among patients with PE as the qualifying event in 6 studies (21, 30-32, 34). EINSTEIN-PE and WODIT-PE enrolled patients only with PE, while the other studies report events among patients with initial PE as a subgroup.

The network for recurrent VTE among patients with initial PE included 2,447 patients. This network involved 4 studies: three with 2 arms and one with 3 arms, resulting in 6 comparisons of 6 treatments (Figure 32).
Compared with discontinuation or placebo, the risk of recurrent VTE was significantly reduced among patients taking VKA (HR 0.02, 95% CI 0.00, 0.10), dabigatran (HR 0.03, 95% CI 0.00, 0.19), apixaban 2.5 mg (HR 0.34, 95% CI 0.13, 0.74), and apixaban 5 mg (HR 0.19, 95% CI 0.07, 0.47) (Table 4).

Compared to patients taking VKA, the risk of recurrent VTE was increased among patients taking ASA (HR 35.37, 95% CI 3.97, 357.30), apixaban 2.5 mg (HR 19.04, 95% CI 2.59, 269.50), and apixaban 5 mg (HR 10.39, 95% CI 1.61, 210.00). The risk was also increased among patients taking ASA (HR 18.01, 95% CI 1.90, 141.90) or apixaban 2.5 mg (9.98, 95% CI 1.43, 94.43) relative to those taking dabigatran.

Table 46: Recurrent VTEs among patients with initial PE: Hazard ratio (95% CrI) for head-to-head comparisons of DOACs — EXTENDED treatment

<table>
<thead>
<tr>
<th></th>
<th>DISCONT/ placebo</th>
<th>VKA 0.02 (0.00, 0.10)*</th>
<th>DBG 150 mg bid 0.03 (0.00, 0.19)*</th>
<th>ASA 100 mg qd 0.57 (0.27, 1.29)</th>
<th>APX 2.5 mg bid 0.34 (0.13, 0.74)*</th>
<th>APX 5 mg bid 0.19 (0.07, 0.47)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>VKA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DBG 150 mg bid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASA 100 mg qd</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX 2.5 mg bid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APX 5 mg bid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: APX = apixaban, ASA = acetylsalicylic acid, DBG = dabigatran, DISCONT = discontinuation, RVX = rivaroxaban, VKA = vitamin K antagonist.
*p < 0.05.
Green cells indicate that the “row” treatment is significantly better than the “column” treatment. Red indicates that the “row” treatment is significantly worse than the “column” treatment.
6. DISCUSSION

Venous thromboembolism is estimated to affect 34,500 Canadians each year and is associated with significant health impact, for patients, their caregivers, and the health care system. Traditional treatment with an injectable heparin product (heparin or low-molecular weight heparin) followed by an oral vitamin K antagonist (VKA) is associated with a 5%–10% risk of VTE recurrence during the first year; however, the risk of recurrence must be balanced with the risk of long-term bleeding. Direct oral anticoagulants are approved in Canada for treatment of VTEs and prevention of recurrent VTEs; DOACs do not require the same laboratory monitoring requirements as oral VKA, and are less prone to dietary and drug interactions compared to VKA. They are, however, more expensive and there is less clinical experience with these agents.

In this study, we evaluated the current evidence for the efficacy and harms of DOACs compared to current standard therapy (heparin followed by oral VKA) for the acute and extended treatment of VTE. We performed a broad systematic review and network meta-analysis to assess the efficacy (prevention of recurrent VTE, DVT, PE) and safety (major and intracranial bleeding, all-cause death, cardiovascular death, MACE, stroke, ACS) based on evidence from randomized controlled trials. No data were located for MACE among acute treatment studies.

ACUTE TREATMENT OF VTE

Among the studies that assessed the acute treatment of VTE, we found no significant differences in the risk of efficacy or safety outcomes between any of the treatments compared with placebo. There were no significant differences between the DOACs for prevention of recurrent VTE, recurrent DVT, recurrent PE (fatal or non-fatal) or for risk of major bleeds, intracranial bleeds, death (all-cause or cardiovascular), or stroke.

EXTENDED TREATMENT OF VTE

Comparison with placebo or discontinuation:

- VKA was associated with a reduced risk of recurrent VTE, DVT, and PE. However, there was an increased risk of major bleeding. There were no differences for all-cause death, CV death, or ACS.

- Dabigatran was associated with a reduced risk of recurrent VTE, DVT, and PE. There was no difference in the risk of major bleeding compared with placebo, and there were no differences in risk for all-cause death, stroke, or ACS.

- Rivaroxaban was associated with an increased risk of major bleeding, and no differences in risk for recurrent VTE, DVT, PE, or death.

- ASA was associated with no significant differences in risk for recurrent VTE, PE, or major bleeds.
• Apixaban (2.5, 5 mg) was associated with no significant differences in risk for recurrent VTE, PE, major bleeds, or death (all-cause or CV).

Head-to-head comparisons:

• ASA was associated with an increased risk of recurrent VTE compared with VKA
• Rivaroxaban was associated with an increased risk of recurrent DVT compared to VKA
• Rivaroxaban was associated with an increased risk of major bleeds compared with VKA, dabigatran, and ASA. Apixaban (2.5 and 5 mg) was associated with a lower risk of major bleed compared to VKA and rivaroxaban. Apixaban 5 mg was associated with a lower risk of major bleed compared to VKA, dabigatran, and rivaroxaban.

6.1. LIMITATIONS

Our study has several limitations that warrant discussion. First, despite the inclusion of several large trials, there was limited evidence for the use of some DOACs in the extended treatment of VTEs, resulting in wide credible intervals for some outcomes. For example, although rivaroxaban was associated with an increased risk of major bleeding relative to placebo (HR 40.13), the 95% credible interval was wide (4.20–395.30). This was primarily due to the limited number of events in the analysis. Only one included trial evaluated rivaroxaban, with zero major bleeds in the placebo arm and 4 in the rivaroxaban arm, resulting in a wide credible interval.

Second, although we analyzed the data according to a priori defined subgroups, limited data were available for these comparisons. The subgroups of interest were age, quality of INR control/time in therapeutic range, weight, renal function, and co-morbidities (diabetes, cardiovascular disease using antiplatelet therapy). No data were identified for patients with diabetes or with cardiovascular disease using antiplatelet therapy. Only one study reported outcome data by quality of INR control, and the data were summarized narratively. The estimates for efficacy and safety for subgroups should be interpreted with caution because they are based on limited data.

Third, no data were identified for the composite outcome MACE; as such, we cannot comment on whether there is a difference in risk between DOACs and standard care for this outcome.

7. KEY MESSAGES

7.1. ACUTE TREATMENT

• There were no significant differences between any of the DOACs and standard therapy for recurrent VTE, recurrent PE, recurrent DVT, major bleeds, intracranial hemorrhage, all-cause death, cardiovascular death, stroke, or acute coronary syndrome.
• There were no differences in recurrent VTE by age, weight, or renal function.

7.2. EXTENDED TREATMENT

• Compared to discontinuation or placebo, patients taking VKA a lower risk of recurrent VTE, DVT and PE, but a higher risk of major bleeding.

• Compared to discontinuation or placebo, patients taking dabigatran had a lower risk of recurrent VTE, DVT =m and PE, with no increased risk of major bleeding.

• There were no significant differences between any of the DOACs and placebo/discontinuation for all-cause death, cardiovascular death, stroke, acute coronary syndrome.

• Compared with VKA, ASA was associated with an increased risk of recurrent VTE.

• Compared with VKA, rivaroxaban was associated with an increased risk of recurrent DVT.

• “The risk of major bleeding was lower among patients taking 5 mg APX compared with VKA, DBG or RVX. The risk of major bleeding was lower among patients taking 2.5 mg APX compared with VKA and RVX”.

• There were no differences among the DOACs in recurrent VTE by age (< 75 v. >75 yr).

• Compared with discontinuation or placebo, the risk of recurrent VTE was lower among patients who weigh more than 60 kg taking VKA, dabigatran, rivaroxaban, or apixaban. Among patients who weigh less than 60 kg, the risk was lower among patients taking rivaroxaban or apixaban; However, the risk between stratum (>60 kg vs < 60 kg) were not statistically different. The risk of recurrent VTE was higher among patients who weigh more than 60 kg taking apixaban (2.5 or 5 mg bid) compared to VKA; there was no difference in risk among patients who weigh less than 60 kg.

• The risk of recurrent VTE was increased among patients taking rivaroxaban compared with VKA or dabigatran among patients with creatinine clearance above 80 ml/min but not less than 80 ml/min. The risk of recurrent VTE was lower among patients taking apixaban (2.5 and 5 mg) compared with rivaroxaban among patients with creatinine clearance above 80 ml/min but not less than 80 ml/min.
8. REFERENCES

APPENDIX 1: SEARCH STRATEGY

VTE DVT PE NOACs – Network Meta-Analysis
Final – Multifile + Cochrane
2014 Nov 5

Database: Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations and Ovid MEDLINE(R) <1946 to Present>, Embase <1980 to 2014 Week 44> Search Strategy:

1 Venous Thromboembolism/ (24963)
2 ((venous or vein$1 or vena) adj2 (thromboemboli* or thrombo-emboli*)).tw. (33936)
3 (VTE or VTEs).tw. (15087)
4 exp Venous Thrombosis/ (135524)
5 ((venous or vein$1 or vena) adj2 thrombos*).tw. (90211)
6 ("deep venous" or "deep vein") adj2 (thrombus or thrombophlebitis or "thrombo-plebitis").tw. (535)
7 (DVT or DVTs).tw. (18078)
8 (phlebothrombos* or phlebo-thrombos*).tw. (1038)
9 exp Pulmonary Embolism/ (93355)
10 ((pulmonary or lung or lungs) adj2 (emboli* or embolus or emboly or microemboli* or micro-emboli* or microembolus or micro-embolus or microembolism or micro-embolism or microembol or micro-embol or thromboembol* or thrombo-embol*)).tw. (74669)
11 or/1-10 (263652)
12 ((new or novel) adj1 (oral anticoagulant* or oral anti-coagulant*)).tw. (3290)
13 (NOA or NOAs or NOAC or NOACs).tw. (2091)
14 ((new or novel) adj1 (direct oral anticoagulant* or direct oral anti-coagulant*)).tw. (76)
15 (DOAC or DOACs).tw. (112)
16 (Apixaban or BMS 562247 or BMS562247 or Eliques or Eliquis).tw. (2402)
17 apixaban.rn. (3128)
18 (Dabigatran or Pradax or Prada or Praxaxa or Rendix).tw. (5394)
19 dabigatran.rn. (910)
20 (Rivaroxaban or BAY 59-7939 or BAY59-7939 or HSDB 5717 or Xarelto or UNII-9NDF7JZ4M3).tw. (4339)
21 rivaroxaban.rn. (4844)
22 (Edoxaban or DU176 or DU176 or DU176b or DU-176b or Savaysa or UNII-NDU3J18APO).tw. (764)
23 edoxaban.rn. (792)
24 exp Heparin, Low-Molecular-Weight/ (53231)
25 LMWH.tw. (9187)
26 ((low molecular or low molecular weight or LMW) adj1 heparin).tw. (1994)
27 Heparin, Low-Molecular-Weight.rn. (7063)
28 (unfractionated heparin or UFH).tw. (11280)
29 (Dalteparin* or FR-860 or Fragmin or Fragmine or Kabi-2165 or "K 2165" or K2165 or Teledparin or low liqumin).tw. (4133)
30 dalteparin.rn. (776)
31 (Enoxaparin* or Clecan* or EMT-966 or EMT-967 or HSDB 7846 or Klexane or Lovenox or PK10169 or PK 10169 or "PK-10,169" or RP 54563 or UNII-8NZ41MIK1O).tw. (10466)
32 enoxaparin.rn. (17927)
33 (nadroparin* or CY 216 or CY 216d or CY216 or CY216d or Fraxiparin* or LMF CY-216 or Nadrohep or Fraxodi or Seleparin* or Tedegliparin*).tw. (2682)
34 nadroparin.rn. (4189)
35 (tinzaparin* or Innohep or Lhn1 or logiparin or UNII-7UQ7X4Y489).tw. (1416)
DIRECT ORAL ANTICOAGULANTS FOR THE TREATMENT OF VENOUS THROMBOEMBOLIC EVENTS

36 tinzaparin.rn. (251)
37 (fondaparinux or Arrixtra or Quixidar or HSDB 7845 or Org-31540 or PENTA or SR 90107 or UNII-J177FOW5JL).tw. (12965)
38 Fondaparinux.rn. (5614)
39 exp Vitamin K/ai (1664)
40 ((Vitamin K or Vit K) adj1 antagonist*).tw. (5936)
41 (VKA or VKAs or "anti vitamin K" or "antivitamin K" or "anti vitamins K" or "antivitamins K").tw. (2843)
42 warfarin/ (79142)
43 (Warfarin* or Aldocumar or Apo-Warfarin or BRN 1293536 or Brumolin or Coumafen* or Coumaphene or Coumadan or Coumadin* or Coumaphene or Dethmor or Dethnel or "Dicusat E" or Gen-Warfarin or Kumader or Kumado or Kumaxor or Kypfarin or "Latka 42" or Marevan or Panwarfin or Prothromadin or Temicumar or Warfant or Warfarat).tw. (44251)
44 warfarin.rn. (73265)
45 Acenocoumarol/ (5592)
46 (Acenocoumarol* or Acenocoumarin* or Acenocumarol* or Acenokumarin* or Acitrom or Ascumar or G-23350 or G23350 or HSD 3201 or Neo sintrom or Neosintrom or Neo sitron or Neositron or Nicoumalone or Nicumalon or Nitrovarfarin or Nitrowarfarin or Sincoumar or Sinkumar or Synthrom* or Sintrom or Sincoumar or Synthrom or Trombostop or UNII-I6WP63U32H or Zotil).tw. (2931)
47 acenocoumarol.rn. (5351)
48 Aspirin/ (194520)
49 (Aspirin or Acetylsalicylic Acid or Acetylsal or Acylpyrin or Aloxiprimum or ASA or Colfarit or Dispril or Easprin or Ecotrin or Esprin or Magnecl or Micristin or Polopirin or Polopiryna or Solpir or Solupsan or Zorprin).tw. (180754)
50 aspirin.rn. (39425)
51 or/12-50 (384226)
52 11 and 51 (45947)
53 randomized controlled trial/ or controlled clinical trial/ (970376)
54 clinical trials as topic.sh. (175982)
55 (randomi#ed or randomly or RCT$1 or placebo*).tw. (1480528)
56 ((singl* or doubl* or trebl* or tripl*) adj (mask* or blind* or dumm*)).tw. (297700)
57 trial.ti. (302130)
58 or/53-57 (2071374)
59 52 and 58 (7426)
60 exp Animals/ not (exp Animals/ and Humans/) (8110914)
61 59 not 60 (7333)
62 (comment or editorial or interview or letter or news).pt. (2889704)
63 61 not 62 (7139)
64 limit 63 to yr="2008-current" (3237)
65 64 use prmz (950)
66 exp venous thromboembolism/ (100943)
67 ((venous or vein$1 or vena) adj2 (thromboemboli* or thrombo-emboli*)).tw. (33936)
68 (VTE or VTEm).tw. (15087)
69 vein thrombosis/ (25779)
70 ((venous or vein$1 or vena) adj2 thrombos*).tw. (90211)
71 (("deep venous" or "deep vein") adj2 (thrombus or thrombophlebitis or "thrombo-phlebitis")).tw. (535)
72 (DVT or DVTe).tw. (18078)
73 (phlebothrombosis* or phlebo-thrombosis*).tw. (1038)
74 ((pulmonary or lung or lungs) adj2 (emboli* or embolus or emboly or microemboli* or micro-emboli* or microembolus or micro-embolus or microemboly or micro-emboly or thromboemboli* or thrombo-emboli*)).tw. (74669)
DIRECT ORAL ANTICOAGULANTS FOR THE TREATMENT OF VENOUS THROMBOEMBOLIC EVENTS

or/66-74 (216003)

((new or novel) adj1 (oral anticoagulant* or oral anti-coagulant*)).tw. (3290)

(NOA or NOAs or NOAC or NOACs).tw. (2091)

((new or novel) adj1 (direct oral anticoagulant* or direct oral anti-coagulant*)).tw. (76)

(DOAC or DOACs).tw. (112)

apixaban/ (3099)

(Apixaban or BMS 562247 or BMS562247 or Eliques or Eliquis).tw. (2402)

apixaban.rn. (3128)

dabigatran/ or dabigatran etexilate/ (5890)

(Dabigatran or Pradax or Pradaxa or Praza or Rendix).tw. (5394)

dabigatran or dabigatran etexilate).rn. (1237)

rivaroxaban/ (4953)

(Rivaroxaban or BAY 59-7939 or BAY59-7939 or HSDB 5717 or Xarelto or UNII-9NDF7JZ4M3).tw. (4339)

rivaroxaban.rn. (4844)

edoxaban/ (789)

(Edoxaban or DU176 or DU-176 or DU176b or DU-176b or Savaysa or UNII-NDU3J18APO).tw. (764)

edoxaban.rn. (792)

low molecular weight heparin/ (34814)

LMWH.tw. (9187)

((low molecular or low molecular weight or LMW) adj1 heparin).tw. (1994)

low molecular weight heparin.rn. (0)

(unfractionated heparin or UFH).tw. (11280)

dalteparin/ (7086)

(Dalteparin* or FR-860 or Fragmin or Fragmin or Kab-2165 or "K 2165" or K2165 or Tedelparin or low liquemin).tw. (4133)

dalteparin.rn. (776)

enoxaparin/ (19502)

(Enoxaparin* or Clexan* or EMT-966 or EMT-967 or HSDB 7846 or Klexane or Lovenox or PK10169 or PK
10169 or "PK-10,169" or RP 54563 or UNII-8NZ41MIK1O).tw. (10466)

enoxaparin.rn. (17927)

nadroparin/ (4372)

(nadroparin* or CY 216 or CY 216d or CY216 or CY216d or Fraxiparin* or LMF CY-216 or Nadrohep or Fraxodi
or Seleparin* or Tedegliparin*).tw. (2682)

nadroparin.rn. (4189)

tinzaparin/ (2526)

tinzaparin* or Innohep or Ihn1 or logiparin or UNII-7UQ7X4Y489).tw. (1416)

tinzaparin.rn. (251)

fondaparinux/ (5268)

(fondaparinux* or Arixtra or Quixidar or HSDB 7845 or Org-31540 or PENTA or SR 90107 or UNII-J177FOW5JL).tw. (12965)

fondaparinux.rn. (5614)

(antivitamin K/ (6948)

(Vitamin K or Vit K) adj1 antagonist*).tw. (5936)

(VKA or VKAs or "anti vitamin K" or "antivitamin K" or "anti vitamins K" or "antivitamins K").tw. (2843)

"antivitamin K".rn. (0)

warfarin/ (79142)

(Warfarin* or Aldocumar or Apo-Warfarin or BRN 1293536 or Brumolin or Coumafen* or Coumaphene or
Coomadan or Coumadin* or Coumafene or Coumphene or Coumefene or Dethmor or Dethnel or "Dicusat E" or
Gen-Warfarin or Kumader or Kumadu or Kumatox or Kypfarin or "Latka 42" or Marevan or Panwarfin or
Prothromadin or Tedicumar or Warfant or Warfarat).tw. (44251)
DIRECT ORAL ANTICOAGULANTS FOR THE TREATMENT OF VENOUS THROMBOEMBOLIC EVENTS

Cochrane Library

Search Name: VTE DVT PE - NOACs - Anti-Platelets Removed
Date Run: 05/11/14 13:49:36.484
Description: Ottawa Heart institute - Final - 2014 Nov 5
ID	**Search**	**Hits**
#1 | [mh "Venous Thromboembolism"] | 417
#2 | ((venous or vein or veins or vena) NEAR/j2 (thromboemboli* or thrombo-emboli*)):ti,ab,kw
#3 | (VTE or VTEs):ti,ab,kw | 442
#4 | [mh "VTEs"] | 2296
#5 | ((venous or vein or veins or vena) near/2 thrombos*):ti,ab,kw | 4167
DIRECT ORAL ANTICOAGULANTS FOR THE TREATMENT OF VENOUS THROMBOEMBOLIC EVENTS

#6 ("deep venous" or "deep vein") near/2 (thrombus or thrombophlebitis or "thrombo-
phlebitis"):ti,ab,kw 9
#7 (DVT or DVTs):ti,ab,kw 980
#8 (phlebothrombos* or phlebo-thrombos*):ti,ab,kw 13
#9 [mh "Pulmonary Embolism"] 920
#10 (pulmonary or lung or lungs) near/2 (emboli* or embolus or emboly or microemboli* or micro-
emboli* or microembolus or micro-embolus or microembol or micro-embol or thromboemboli* or
thrombo-emboli*):ti,ab,kw 2240
#11 {or #1-#10} 6200
#12 ((new or novel) near/1 ((oral next anticoagulant*) or (oral next anti-coagulant*)):ti,ab,kw
74
#13 (NOA or NOAs or NOAC or NOACs):ti,ab,kw 30
#14 ((new or novel) near/1 ("direct oral" next anticoagulant*) or ("direct oral" next anti-
coagulant*)):ti,ab,kw 0
#15 (DOAC or DOACs):ti,ab,kw 0
#16 (Apixaban or "BMS 562247" or BMS562247 or Eliques or Eliquis):ti,ab,kw 155
#17 (Dabigatran or Pradax or Pradaxa or Prazaxa or Rendix):ti,ab,kw 247
#18 (Rivaroxaban or "BAY 59-7939" or "BAY59-7939" or "HSDB 5717" or Xarelto or UNII-
9NDF7J24M3):ti,ab,kw 281
#19 (Edoxaban or DU176 or "DU-176" or DU176b or "DU-176b" or Savaysa or UNII-
NDU3J18APO):ti,ab,kw 56
#20 [mh "Heparin, Low-Molecular-Weight"] 1750
#21 LMWH:ti,ab,kw 694
#22 ("low molecular weight" or "low molecular" or LMW) near/1 heparin):ti,ab,kw 2477
#23 ("unfractionated heparin" or UFH):ti,ab,kw 1135
#24 (Dalteparin* or "FR-860" or Fragmin or Fragmine or "Kabi-2165" or "K 2165" or K2165 or
Tedelparin or "low liquemin"):ti,ab,kw 544
#25 (Enoxaparin* or Clexan* or "EMT-966" or "EMT-967" or "HSDB 7846" or Klexane or Lovenox or
PK10169 or "PK 10169" or "RP 54563" or UNII-8NZ41MIK1O):ti,ab,kw 1262
#26 (nadroparin* or "CY 216" or "CY 216d" or CY216 or CY216d or Fraxiparin* or Nadorhep or
Fraxodi or Seleparin* or Tedegliparin*):ti,ab,kw 304
#27 (tinzaparin* or Innohep or Ihn1 or logiparin or UNII-7UQ7X4Y489):ti,ab,kw 169
#28 (fondaparin* or Arixtra or Quixidar or "HSDB 7845" or "Org-31540" or PENTA or "SR 90107" or
UNII-J177FOW5JL):ti,ab,kw 324
#29 [mh "Vitamin K"/ai] 102
#30 ("Vitamin K" or "Vit K") near/1 antagonist*):ti,ab,kw 207
#31 (VKA or VKAs or "anti vitamin K" or "antivitamin K" or "anti vitamins K" or "antivitamins
K"):ti,ab,kw 132
#32 [mh warfarin] 1223
#33 (Warfarin* or Aldocumar or "Apo-Warfarin" or "BRN 1293536" or Brumolin or Coumafen* or
Coumaphene or Coumadan or Coumadin* or Coumafene or Coumaphene or Coumefene or Dethmor or
Dethnel or "Dicusat E" or "Gen-Warfarin" or Kumader or Kumadu or Kumatox or Kymparin or "Latka 42"
or Marevan or Panwarfin or Prothromadin or Tedicumar or Warfant or Warfarat):ti,ab,kw 2384
#34 [mh Acenocoumarol] 108
#35 (Acenocoumarol* or Acenocoumarin* or Acenocumarol* or Acenokumarin* or Acitrom or
Ascumar or "G-23350" or G23350 or "HSDB 3201" or "Neo sintrom" or Neosintrom or "Neo sitron" or
Neositron or Nicoumalone or Nicumalon or Nitrovarfarian or Nitrowarfarin or Sincoumar or Sinkumar or Synthrom* or Sintrom or Syncoumar or Syncumar or Synthrom or Trombostop or UNII-I6WP63U32H or Zotil):ti,ab,kw 186
#36 [mh Aspirin] 4492
#37 (Aspirin or Acetylsalicylic Acid or Acetysal or Acylyprin or Aloxiprimum or ASA or Colfarit or Dispril or Easprin or Ecotrin or Endosprin or Magnecyl or Micristin or Polopirin or Polopiryna or Solprin or Solupsan or Zorprin):ti,ab,kw 15815
#38 {or #12-#37} 21520
#39 #11 and #38 Publication Year from 2008 to 2014 646

DSR - 39
DARE - 64
CENTRAL – 466 (RCTs)
Methods – 2
HTA – 29
NHS EED – 46
APPENDIX 2: INCLUDED STUDIES

ACUTE

12. van BB, Bamber L, Correa De CF, Prins M, Wang M, Lensing AWA. Reduction in the length of stay with rivaroxaban as a single-drug regimen for the treatment of deep vein thrombosis and

Protocols

1. NCT0223483 - EINSTEIN JUNIOR PHASE III
2. EINSTEIN JUNIOR (NCT01684423) – currently recruiting
3. NCT01895777 – Dabigatran v. standard care in pediatric patients with VTE
4. NCT00680186 – unpublished RECOVER

EXTENDED

Protocols

1. EINSTEIN CHOICE (NCT02064439)
2. ID110 – ALICAT (NCT01817257, ISRCTN37913976)
3. ID266 – ExACT study (ISRCTN73819751)
4. PADIS-EP trial - Coutardu 2008 (ID777), Coutardu 2008 (ID797)

INCLUDED ABSTRACTS

APPENDIX 3: EXCLUDED PUBLICATIONS

10. Aspirin as safe and effective as LMWH for extended thromboprophylaxis. *Prescriber* 2013;24(22):12.

42. Clinical Evaluation of GS576428 (Fondaparinux Sodium) in Prevention of Venous Thromboembolism (VTE) after Abdominal Surgery.

51. Dabigatran "non-inferior" to warfarin, but only just. *BMJ* 2013;346:f1219.

52. Dabigatran as effective as warfarin for treatment of acute venous thromboembolism. *Australian J Pharm* 2010;91(1080):82.

68. Extended course of apixaban not superior to short course of enoxaparin. *Australian J Pharm* 2012;93(1104):91.

118. Lieu T.K., T.G. Deloughery. Randomised controlled trial: Extended-duration dabigatran is non-inferior to warfarin and more effective than placebo for symptomatic VTE. *EBM* 2014;19(1):29.

134. NCT01880216. Efficacy of Bemiparin Versus Enoxaparin in the Treatment of DVT. ClinicalTrials.gov

135. NCT01956955. Comparison of Low-Molecular-Weight Heparin (LMWH) and Unfractionated Heparin (UFH) in Combination With Thrombolytic Treatment of Acute Massive Pulmonary Thromboembolism. ClinicalTrials.gov.

162. Rosenberg D.J., J. Ansell. Oral rivaroxaban for acute DVT, or long term for VTE, is as effective as enoxaparin followed by a vitamin K antagonist for preventing recurrence, with no increase in bleeding complications. *Evidence-Based Medicine*. 2011;16(5):139-140.

EXCLUDED ABSTRACTS

3. Bauersachs R. Catch-a randomised clinical trial comparing long-term tinzaparin versus warfarin for treatment of acute venous thromboembolism in cancer patients. Hematology Reports. 10th International Winter Meeting on Coagulation: Basic, Laboratory and Clinical Aspects of Venous and Arterial Thromboembolic Diseases; 2010 April 10-16; Bormio Italy.

20. Gebel M., M. Prins, A.W.A. Lensing. Statin use was associated with a non-significant reduction in the observed incidence of recurrent VTE in EINSTEIN-DVT and EINSTEIN-PE. 55th Annual Meeting of the American Society of Hematology; 2013 Dec 7-10; New Orleans, LA. Blood 2013;122(21).

40. Papers and abstracts of the 5th International Conference on Thrombosis and Hemostasis Issues in Cancer. 5th International Conference on Thrombosis and Hemostasis Issues in Cancer; 2010 April 23-25; Stresa, Italy. Thromb Res 2010;125.

52. Siragusa S. Residual vein thrombosis for assessing the optimal duration of oral anticoagulants in cancer patients. 21st International Congress on Thrombosis — The Start of a New Era Antithrombotic Agents; 2010 July 6-9; Milan, Italy. Pathophysiol Haemostas Thrombo 2010;37.

APPENDIX 4: RISK OF BIAS

<table>
<thead>
<tr>
<th>TRIAL (AUTHOR, YEAR)</th>
<th>ADEQUATE SEQUENCE GENERATION</th>
<th>ALLOCATION CONCEALMENT</th>
<th>BLINING OF OUTCOMES ASSESSMENT (Objective)</th>
<th>INCOMPLETE OUTCOME DATA ADDRESSED – EFFICACY OUTCOMES</th>
<th>INCOMPLETE OUTCOME DATA ADDRESSED – SAFETY OUTCOMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACUTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RE-COVER (Schulman 2009)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Unclear</td>
</tr>
<tr>
<td>RE-COVER II (Schulman 2014)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>HOKUSAI (Buller 2013)</td>
<td>Low</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>AMPLIFY (Agnelli, 2013)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>EINSTEIN-DVT (Bauersachs, 2010)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>EINSTEIN-PE (Buller 2012)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>EXTENDED</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DURACII (Schulman 1997)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>LAFIT (Kearon 1999)</td>
<td>Low</td>
<td>Unclear</td>
<td>Low</td>
<td>Unclear</td>
<td>Unclear</td>
</tr>
<tr>
<td>WODIT-DVT (Agnelli 2001)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>WODIT-PE (Agnelli 2003)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>AUREC-VFII (Eischer 2009)</td>
<td>Unclear</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>RE-SONATE (Schulman 2013)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>RE-MEDY (Schulman 2013)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>EINSTEIN-EXT (Bauersachs, 2010)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>AMPLIFY-EXT (Agnelli 2013)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>WARFASAA (Becattini 2012)</td>
<td>Low</td>
<td>Unclear</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>ASPIRE (Brighton 2012)</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

Low = low risk of bias; Unclear = insufficient detail to make judgment; High = high risk of bias
APPENDIX 5: ASSESSMENT OF INCONSISTENCY

Two analyses were conducted, one using the standard consistency model and the other using an inconsistency model. The residual deviance and DIC statistics of the consistency and inconsistency models were then compared. To help identify the loops in which inconsistency is present, the posterior mean deviance of the individual data points in the inconsistency model were plotted against their posterior mean deviance in the consistency model.

In general, the consistency model has a lower posterior mean of the residual deviance and DIC and hence is a better fit than the inconsistency model for all outcomes.

Extended: Recurrent VTEs – Plot of posterior mean deviance of the individual data points in the inconsistency model against their posterior mean deviance in the consistency model
Extended: Recurrent DVTs – Plot of posterior mean deviance of the individual data points in the inconsistency model against their posterior mean deviance in the consistency model

![Graph showing the relationship between posterior mean deviance in the inconsistency model and the consistency model for recurrent DVTs.]

Extended: Recurrent PE (total) – Plot of posterior mean deviance of the individual data points in the inconsistency model against their posterior mean deviance in the consistency model

![Graph showing the relationship between posterior mean deviance in the inconsistency model and the consistency model for recurrent PE (total).]
Extended: Recurrent non-fatal PE – Plot of posterior mean deviance of the individual data points in the inconsistency model against their posterior mean deviance in the consistency model

Extended: Recurrent fatal PE – Plot of posterior mean deviance of the individual data points in the inconsistency model against their posterior mean deviance in the consistency model
Extended: Major bleeds – Plot of posterior mean deviance of the individual data points in the inconsistency model against their posterior mean deviance in the consistency model

Extended: All-cause death – Plot of posterior mean deviance of the individual data points in the inconsistency model against their posterior mean deviance in the consistency model