

Perioperative Glycemic Control in Post-Cardiac Surgery Patients

Dr. Amel Arnaout, MD, FRCPC^{1,3}; Nazli Parast, RN, BScN, CDE, MScN (C)¹; Dr. Paul Stewart, MBBS²; Sandhya Goge, RN, MScN, CDE¹; Kimberly Twyman, RN, BScN, CDE¹

1. University of Ottawa Heart Institute, Ottawa, ON; 2. University of Ottawa, Ottawa, ON; 3. The Ottawa Hospital, Ottawa, ON Insulin Use – At home vs In-hospital

Background:

A number of studies have demonstrated that inpatient hyperglycemia is associated with increased morbidity and mortality in non-critically ill hospitalized patients (1). On admission to University of Ottawa Heart Institute (UOHI), the mean HbA1c is 8.9% and in hospital hyperglycemia persists. In patients undergoing coronary artery bypass grafting (CABG), a preexisting diagnosis of diabetes has been identified as a risk factor for postoperative sternal wound infections, delirium, renal dysfunction, respiratory insufficiency and prolonged hospital stays (2,3). Tight glycemic control (GC) via insulin infusion protocols (IIP) improves outcomes in post-operative cardiac surgery patients. Upon discontinuation of insulin infusion, glycemic control worsens increasing the risk of post-op infection and length of stay.

Objectives:

Primary Outcomes:

- 1)To evaluate glycemic management strategies post cardiac surgery following discontinuation of IIP
- 2)To measure post operative infection rates

Secondary Outcome:

3) To create a standardized protocol to facilitate transition from IIP to subcutaneous (SC) insulin administration post cardiac surgery

Method:

We conducted a retrospective chart audit on patients admitted to the UOHI between June – August 2015 that met the <u>inclusion criteria</u> of undergoing open heart surgery & HbA1c ≥ 6% pre-operatively. Glycemic control was evaluated while on insulin infusion protocol and for the 7 days following discontinuation of IIP. Post-op infection rate was measured at 90 days post surgery.

Results:

	N	%
# of patients who had surgery (Jun-Aug 2015)	355	_
Patients who met inclusion criteria	166	46.8%
Average age	68.2	_
Gender		
• Male	121	73%
• Female	45	27%
BMI	30.7	_
Procedure		
• CABG	98	59%
• CABG + other	35	21%
• Other	33	20%
% of patients on home insulin regimen	37	22.3%
% of patients on IIP	129	77.7%

Discussion:

Almost one third (27%) of cohort patients developed infection post-operatively. IIP patients with HbA1c of less than 6.5% were twice as likely to develop post-op infection compared to patients with HbA1c of more than 9%.

Interestingly, non-IIP infections were mainly seen in patients with HbA1c of 7% or less.

These findings suggest that a standardized approach for intraoperative IIP initiation needs to be established and <u>all patients</u> requiring IIP should be prescribed SC insulin upon transfer to the ward. Hence, a multi-disciplinary taskforce developed a protocol to transition patients from IV insulin to SC insulin as follows:

<u>Transition from IV Insulin to Subcutaneous Insulin</u> (for Type 2 Diabetes ONLY):

At the time of transfer, if patient has had IV insulin infusion at a rate ≥ 1 units/hr for each of the previous 4 hours then:

Calculate Total Daily Dose (TDD):

Last 4 hours of insulin infused units x 6 = TDD

Prescribe 50% of TDD for subcutaneous administration of long acting basal analogue insulin 1 -2 hrs before IV Insulin is discontinued.

(TDD ____ divided by 2 = ____units of SC basal dose

S/C Glargine ____units at ____hours, then once daily **OR**S/C Detemir ___units at ___hours, then once daily

AND correction scale TID, rapid acting analogue insulin on HEA 239; Physicians Orders-Subcutaneous Insulin Administration Using Disposable Pen Device

For patients on IV insulin that don't meet the above criteria:

Prescribe correction scale TID **ONLY**, rapid acting analogue insulin on HEA239.

Oral hypoglycemic agents to be reassessed once tolerating full fluids/diabetes diet.

Conclusion:

Perioperative hyperglycemia is an independent risk factor for developing many complications. The low percentages of IIP patients being initiated on SC insulin correlates with increased risk of infection post-operatively. This study supports the notion of creating a protocol to safely transition patients from IIP to SC insulin. The next steps would be to establish intra-operative IIP protocol and to implement a standardized approach to safely transition patients from IIP to SC insulin.

References

- 1. Houlden, R. et. al. (2013). In-hospital management of diabetes. Canadian Diabetes Association Practice Guidelines Expert Committee. Canadian Journal of Diabetes, 37: S77-S81.
- 2. Brandt, M., Harder, K., Walluscheck, K., Fraund, S., Boning, A., & Cremer, J. (2004). Coronary Artery Bypass Surgery in Diabetic Patients. *Journal Of Cardiac Surgery*, *19*(1), 36-40.
- 3. Bucerius, J., Gummert, J., Walther, T., Doll, N., Falk, V., & Onnasch, J. et al. (2003). Impact of Diabetes Mellitus on Cardiac Surgery Outcome. *The Thoracic And Cardiovascular Surgeon*, 51(2), 11-16.